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We've gotten used to great applications @

amazon.com M -




Enabling Such Apps is Hard

m Apps
o Process huge amounts of data
o Are fast
o Are reliable
m One machine is not enough
o Limited reliability, speed

m Super computers are expensive

m Use many commodity machines instead ...
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Data Centers Rule the World

Cloud computing

m Fconomies of scale: networks of tens
thousands of hosts

Datacenter apps support web search,
online stores

m VWeb search, GFS, Biglable,
DryadLINQ, MapReduce

m Dense traffic patterns

m Intra datacenter traffic Is increasing in volume
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T : CHENGE
Flexibility is Important in Data Centers

m Apps distributed across thousands of machines.

m Flexibility
want any machine to be able to play any role.
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Traditional Data Center Topology
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Fat Tree TOPO|Og)’ [Fares et al., 2008; Clos, 1953]
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VL2 T0p0|0g)' [Greenberg et al, 2009, Clos topology]




BCube Topology [Guo et al, 2009]

BCube (4,1)
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How Do We Route Packets in Data Centers!?

m [raditional Routing
o Spanning Tree Protocol - kills all redundancy

m |nstead datacenters use one of the following techniques:
o Multiple VLANs

o OSPF
o TRILL (new IETF standard)
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How Do We Use this Capacity!? -

m Need to distribute flows across available paths.

m Basic solution: Random Load Balancing.

o Use Equal-Cost Multipath (ECMP) routing (OSPF,
TRILL)

* Hash to a path at random.
o Sources randomly pick a VLANS.

* In practice sources have multiple interfaces — pick a
random source address for the flow




Collisions
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Single-path TCP collisions reduce throughput
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How bad are collisions?

m Capacity wasted (worst case):

o FatTree — 60%
o BCube — 509
o VL2 — 25%

cHESIGE
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How do we address this problem?

m | will discuss two solutions

o Flow scheduling

o Multipath TCP




Flow Scheduling
Hedera — Fares et al. NSDI 2010
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Solving Collisions with Flow Scheduling CHENGE

1. Pull stats, detect large flows
2. Compute flow demands

3. Compute placement

4. Place flows

Centralized
Controller &

Racks of
servers




Hedera Main ldea

m Schedule elephant flows

o They carry most of the bytes

m ECMP deals with short flows

cHESIGE




CHENGE
Detecting Elephants @

m Pull edge switches for byte counts

o Flows exceeding |00Mb/s are large

m What it only short flows!
o ECMP should be good enough
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Demand Estimation

m Current flow rates are a poor indicator of flow demand

o Network could be the bottleneck

m Hedera's approach: what would this flow get if the
network was not a bottleneck!




Demand estimation: simple example

SCOMDb

B 500Mb/

m General Approach: Iterative algorithm
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: CHENGE
Allocating Flows to Paths 4

s Multi-Commodity Flow Problem
m Single path forwarding
m Expressed as Binary Integer Programming
m NP-Complete

m Solvers give exact solution but are
impractical for large networks




CHENGE
Approximating Multi-Commodity Flow - 4

m Global First Fit

o Linearly search all paths until one that can
accommodate the traffic is found

o Flows placed upon detection, are not moved
m Simulated Annealing

o Probabillistic search for good solutions that maximize
bisection bandwidth
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Fault Tolerance @

m Scheduler

fallure

nall soft state, just fall back to ECMP

m | ink switc

N fallures

o Portland notifies the scheduler
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Does it work!? CHENGE

Simulator - 8,192 hosts (k=32)
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Hedera: One Flow, One Path CHENGE

m Centralized
o Can it scale to really large datacenters?
m Needs a very tight control loop

o How often does it need to run to achieve these
benefits?

m Strong assumption:
traffic is always bottlenecked by the network
o What about app-bound traffic, e.g disk reads/writes?




Hederaj One Flow, One Path

m Centralized

rov datacenters!  NMAYRE

o Can.g O

m Needs . . BLE
This Is the wrong place to start
o Ho e
benerits:
m Strong assumption: Only Hosts Know

traffic is always bottlenecked by the network
o What about app-bound traffic, e.g disk reads/writes?
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Multipath topologies need multipath transport

Multipath transport enables better topologies




Collision










Not fair




Not fair










No matter how you do It
mapping each flow to a path Is the wrong goal
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Instead, we should pool capacity from different links




CH@GE

Instead, we should pool capacity from different links
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Instead, we should pool capacity from different links
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Instead, we should pool capacity from different links
K T

N
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Multipath Transport




Multipath Transport can pool datacenter netvtv}@ S

o Instead of using one path for each flow, use
many random paths

o Don't worry about collisions.

o Just don't send (much) traffic on colliding paths




+8%

G
Multipath TCP Primer [IETF MPTCP WG]~ &0 -

m MPTCP is a drop in replacement for TCP

o Works with unmodified applications

o Over the existing network




MPTCP Operation




MPTCP Operation




MPTCP Operation

STATE 1
CWND
Snd.SEQNO
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MPTCP Operation
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STATE 1
CWND
Snd.SEQNO




MPTCP Operation

STATE 1
CWND
Snd.SEQNO
Rcv.SEQNO




MPTCP Operation

STATE 1
CWND
Snd.SEQNO
Rcv.SEQNO

STATE 2
CWND

Snd.SEQNO
Rcv.SEQNO




MPTCP Operation

options

SEQ DSEQ STATE 1
CWND
1000 | | 10000| PATA —> Snd.SEQNO

Rcv.SEQNO

STATE 2
CWND
Snd.SEQNO
Rcv.SEQNO




MPTCP Operation

options
SEQ DSEQ SlLallE
CWND

Rcv.SEQNO

STATE 2
CWND
Snd.SEQNO
Rcv.SEQNO




MPTCP Operation
options
SEQ DSEQ
1000 | | 10000 DATA >
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STATE 1
CWND
Snd.SEQNO
Rcv.SEQNO

STATE 2
options CWND
SEQ DSEQ Snd.SEQNO
5000 | *** | 11000 DATA —2 Rcv.SEQNO
S e



MPTCP Operation

SEQ STATE 1
DATA CWND
1000 > Snd.SEQNO

Rcv.SEQNO

STATE 2
options CWND

SEQ DSEQ Snd.SEQNO
5000 | - ‘ 11000 ) DATA —2 Rcv.SEQNO




MPTCP Operation
options
seq| |DSEQ
1000 | | 10000| PATA

options

SEQ
5000
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|1 11000

DATA
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STATE 1
CWND
Snd.SEQNO
Rcv.SEQNO

STATE 2
CWND
Snd.SEQNO
Rcv.SEQNO
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MPTCP Operation

options

SEQ DSEQ
1000 | " | 10000

DATA
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STATE 1
CWND
Snd.SEQNO
Rcv.SEQNO

STATE 2
options CWND
Snd.SEQNO
Rcv.SEQNO



MPTCP Operation

ACK
2000
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STATE 1
CWND
Snd.SEQNO

M\/ SEQNO

STATE 2
CWND
Snd.SEQNO
Rcv.SEQNO




MPTCP Operation

options

SEQ DSEQ

2000 11000 DATA —>

STATE 1
CWND
Snd.SEQNO
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STATE 2
CWND
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Multipath TCP: Congestion Control [NSDI, 201 |]
- -
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MPTCP better utilizes the FatTree netwof;kl_| ==

1000 -
. 800 |
()
S .
=
- 600 |
-}
o
£
S
3 400 2
c
|_
200 .
Optimal Throughput m—
0 | | . TCE Flow Thropghpgt .
O 1000 2000 3000 4000 5000 6000 7000 8000 9000
Rank of Flow

7/ 7/ - ﬂ/



MPTCP on EC2 ~ ==

m Amazon EC2: infrastructure as a service
o We can borrow virtual machines by the hour
o These run in Amazon data centers worldwide
o VWe can boot our own kemel

m A few avallability zones have multipath topologies

o 2-3 paths available between hosts not on the same
machine or In the same rack

o Available via ECMP
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Amazon EC2 Experiment CHEBEE

m 40 medium CPU instances running MPTCP

m For |2 hours, we sequentially ran all-to-all iperf cycling
through:

o [CP
o MPTCP (2 and 4 subflows)




MPTCP improves performance on EC2
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Where do MPTCP’s benefits

come from?




Allocating Flows to Paths
s Multi-Commodity Flow Problem
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Allocating Flows to Paths |

s Multi-Commodity Flow Problem

s Multipath forwarding
m Expressed as Linear Programming problem
m Solvable in polynomial time




m How many subflows are needed!

m How does the topology affect results!

m How does the traffic matrix affect results?
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At most 8 subflows are needed

Throughput (% of optimal)
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MPTCP improves fairness in VL2 topologies
| VL2
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MPTCP improves throughput and fairness in BCube
BCube
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Oversubscribed Topologies

m [0 saturate full bisectional bandwidth:
O There must be no traffic locality
O All hosts must send at the same time
O Host links must not be bottlenecks

m [t makes sense to under-provision the network
core

O This is what happens In practice
0 Does MPTCP still provide benefits!
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Performance improvements depend on traffi
matrix

218 Top

a2 1.7 ¢ MPTCP smssmusass

N

216 t ge,

o () . ©

.E 15 B g :' “““ %, 8

= _ o § " O

n 1.4 = 1 S

© ) k —

E 13 B N ®) ‘.‘ 3 q)

— c & £y >

o 12 B D ““0’ "“ O

£ 1.1 v Sweet Spot “~ .

él:’ 1 r ettt
0.9 S ___ TS

0.001 0.01 0.1 1 10
Connectionw
Increase Load

R I



CI—I@GE

MPTCP vs. Centralized Scheduling
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MPTCP vs Hedera First Fit
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Centralized Scheduling: Setting the Threshoﬂ@

Th rokjgh put

Hope

1Gbps | 7% worse than

multipath TCP

100Mbps
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Centralized Scheduling: Setting the Threshoﬂ@ =

Throughput
1Gbps| 21% worse than
multipath TCP
100Mbps -Aﬁl'm




CHENGE
Centralized Scheduling: Setting the Threshoﬂ‘@
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MPTCP vs. Hedera —=E

| MPTCP HEDERA

Implementation Distributed Centralized
Network changes No Yes, upgrade all
switches to OF
Hardware needed No Centralized Scheduler
Software changes Yes — host stack No
Scope Schedules more flows Large flows only

Convergence Time  Scale Invariant, RTTs  Tight Control Loop
Limits Scalability

Fairness Fair | ess fair




VWhat Is an opti

topology for m

cHESIGE

mMal datacenter

tipath transport!
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In single homed topologies:

0 Hosts links are often bottlenecks

o ToR switch faillures wipe out tens of hosts for days

Multi-homing servers is the obvious way forward




Fat Tree Topology




Fat Tree Topology

Upper Pod
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ToR Switch

} Servers




Dual Homed Fat Tree Topology
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Is DHFT any better than Fat Tree! B s

m Not for traffic matrices that fully utilize the core

m | et's examine random traffic patterns




core is not overloaded
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Summary CHENGE

m "One flow, one path” thinking has constrained datacenter
design
o Collisions, unfairness, limrted utilization

o Fixing these Is possible, but does not address the
bigger Issue

m Multipath transport enables resource pooling in datacenter
networks:

o Improves throughput
o Improves fairness

o Improves robustness

m "One flow, many paths” frees designers to consider
topologies that offer improved performance for similar cost

, . o 6/66"(77 7 /Z,,
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Backup Slides
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Effect of MPTCP on short flows

Flow sizes from VL2 dataset

MPTCP enabled for long flows only (timer)

Oversubscribed Fat Tree topology

Results:
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TCP/ECMP  MPTCP
o Completion time:  /9ms 97ms
o Core Utllization:  25% 65%
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Effect of Locality in the Dual Homed Fat Tree
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Overloaded Fat Tree: better fairness with :

Multipath TCP
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VL2 T0p0|0g)' [Greenberg et al, 2009, Clos topology]




BCube Topology [Guo et al, 2009]

BCube (4,1)




