
RouteFlow

 Virtualized IP Routing Services in
OpenFlow networks

Agenda

• Background: OpenFlow, Logical/Virtual Routers, Network Virtualization
• Project Overview
• Motivation
• Architecture

– Controller
– Server
– Slave
– Protocol

• Evaluation
• Work ahead
• Demo and hands-on Tutorial

The Project

RouteFlow is an open-source project to provide IP routing
& forwarding services in OpenFlow networks

CPqD UniRio Unicamp Indiana University

Marcelo Nascimento Carlos Corrêa Mauricio Magalhães Stanford University

Christian E. Rothenberg Sidney Lucena UFSCAR

Marcos Salvador UFPA

Eder Leao Fernandes ...

Rodrigo Denicol

Alisson Soares

About CPqD

• Major telecom R&D center in LATAM with expertise in various areas:
– Optical (WDM, PON), Wireless (WiMax, LTE), IP (IMS/NGN, OpenFlow), OSS/BSS, Digital TV…

– Today with ~1200 highly-skilled employees

• Created in 1976 as R&D branch of Telebras - Brazilian telecom monopoly

• Private foundation since 1998 after Telebras was privatized

• Purpose to foster innovation to help (mainly) Brazilian companies and society
– Focus on technology R&D
– Bridge the gap between universities and

the industry

• Near highly-ranked universities in Brazil
– History of collaborations

About the GIGA Project Testbed

• 800km total fiber span over 7 cities in 2
states (SP, RJ)

• 66 labs from 26 institutions connected
(fiber to the lab) at 1 and 10 Gbps

• Manually provisioned (VLAN) circuits for
stable traffic

• e2e dynamic (VLAN) multidomain protected
circuits for L2 and above on demand
experiments

• Manually provisioned wavelengths for L1 and
above experimentation

• Focus on technology R&D and the industry

www.projetogiga.org.brwww.projetogiga.org.br

RouteFlow Project Timeline

• Aug /
20

10

• Ja
n /

20
10

• Dez
 /

20
10

• Nov
/ 2

01
1

• Oct
 /

20
11

• Start Msc. Thesis

work by Marcelo N.

• First Prototype

• QuagFlow Poster
@ SIGCOMM

• Open-Source
Release

• Demos @ ONS11

• Demo @
SuperComputing 11

• Tutorial & Demo @
OFELIA/CHANGE SS• First Short-Paper

@ WPEIF

• M
ay

 /
20

11

• Evalaluation on
NetFPGA testbed

• Indiana University
- Pronto OF
switches + BGP
peering with
Juniper MX

• ...
 /

20
12

• Nation-wide field trials

(Brazil, Internet2)
@ ONS12

• RouteFlow +
OpenStack
(Cloud RouteFlow)

… building a community

http://go.cpqd.com.br/routeflow/
Apache-licensed code @ github

http://go.cpqd.com.br/routeflow/

Overview

Motivation v1

Original motivation around RouteFlow (formerly QuagFlow)

(Seeded in experience building a Broadcom-based L2/L3 switch prototype)

• Current “mainframe” model of networking equipment:
• Costly systems based on proprietary HW and closed SW;
• Lack of programmability limits cutomization and in-house innovation;
• Ossified architectures.

• Goal: Open commodity routing solutions:

 + open-source routing protocol stacks (e.g. Quagga)

 + commercial networking HW with open API (i.e. OpenFlow)

 = line-rate performace, cost-efficiency, and flexibility!

Control Logic

RIP BGP OSPF ISIS

O.S.Driver

Hardware

R
O
U
T
E
R

Proprietary IPC / API

Management

Telnet, SSH, Web, SNMP

Current router architectures

Control Logic

RIP BGP OSPF

O.S.Driver

Hardware

O.S. API

Standard API (i.e. OpenFlow)

Switch

Controller
Management

OpenFlow model

API

Motivation v2

• A transition path, incrementally deployable:
from current IP networks to SDN
• Hybrid modes of operations: traditional IP control planes along SDN

• Innovation around IP control planes
• Simplified network mgm, protocol optimization, shadow networks

• Advancing IP Network Virtualization
• From flexible Virtual Routers to IP Network-as-a-Service

Use Cases

Architecture

Key Features

• Separation of data and control planes;

• Loosely coupled architecture:
• Three RF components:

1. Controller, 2. Server, 3. Slave(s)

• Unmodified routing protocol stacks;
• Routing protocol messages can be sent

'down' or kept in the virtual environment;

• Portable to multiple controllers:
- RF-Controller acts as a “proxy” app.

• Multi-virtualization technologies
• Multi-vendor data plane hardware

RF-Controller application

 Shim application on an OpenFlow controller
 Mainly acts like a proxy for the OpenFlow API
 Interacts with the OpenFlow datapaths
 Filters relevant events to the RF-Server
 Receives flow mod commands
 Delivers traffic to/from VM interfaces via OVS

RouteFlow Server

• The “brain” of RouteFlow;
• Manages available virtual machines (VM);
• Configures the virtual environment
• Receives events from the RF- controller

– Switch join/leave, packet-in;

• Associates VMs and OpenFlow switches;
• Determines packet delivery from/to VMs
• Requests flow installation / modification in

OpenFlow switches.

RF-Server: Association of VMs and DPs

Switch
OpenFlow

[1]

Switch
OpenFlow

[2]

Switch
OpenFlow

[n]
. . .

RF- Server

OVS

VM A
1
2
30

VM B
1
2
30

VM C
1
2
30

1
2
3

4
5
6

7
8
9

RF - Controller

VM DP port OVS
port

A 1 1 1

A 1 2 2

A 1 3 3

B 2 1 4

B 2 2 5

...

C 3 3 9

RF
slave

RF
slave

RF
slave

NOX

1
2

3

4

5

RF-Server: Flow of Routing Control Packets

Switch
OpenFlow

[1]

Switch
OpenFlow

[2]

Switch
OpenFlow

[n]
. . .

RF- Server

OVS

VM A
1
2
30

VM B
1
2
30

VM C
1
2
30

1
2
3

4
5
6

7
8
9

RF - Controller

VM DP port OVS
port

A 1 1 1

A 1 2 2

A 1 3 3

B 2 1 4

B 2 2 5

...

C 3 3 9

RF
slave

RF
slave

RF
slave

NOX

3
5

6

2

1

4

RouteFlow-Slave

• Runs as a daemon in Linux-based VM
• Registers the VM with the RF-Server
• Configures the VM (e.g., interfaces)
• Listens to ARP and IP table updates via

Linux Netlink events
– Linux Routing stack independent

(Quagga, XORP)

• Translates routing updates into flow rules;
– Match: DST_MAC + DST_IP + MASK

– Actions: Re-write MACs + port-out

• Translates ARP entries into flow rules
– Match: DST_MAC + DST_IP

– Actions: Re-write MACs + port-out

• Sends flow update commands to RF-
Server

• Runs VM-OVS attachment discovery
protocol

RF-Slave: VM configuration

 Cofigure the amount of interfaces (enable/disable);

 Start/Stop Routing Engine;

 Clean interface configuration and ARP/ROUTE tables

RouteFlow
Slave

ARP
Table

ROUTE
Table

Route
Engine

NIC NIC NIC NIC. . .

VM

Switch
OpenFlow

[1]

Switch
OpenFlow

[2]

Switch
OpenFlow

[n]
. . .

RF- Server

OVS

VM A
1
2
30

VM B
1
2
30

VM C
1
2
30

1
2
3

4
5
6

7
8
9

RF - Controller

VM DP port OVS
port

A 1 1 1

A 1 2 2

A 1 3 3

B 2 1 4

B 2 2 5

...

C 3 3 9

RF
slave

RF
slave

RF
slave

NOX

3

2

4

1

RF Add/Remove Routes

IP Forwarding Rules in OpenFlow

RF-Slave info from the Linux network stack
• Route =IP + MASK [Rede]+IP[Gateway]+Interface
• ARP= IP[Host]+MAC[Host]+Interface

OpenFlow 1.0 entry:
• Match: DST_MAC + DST_IP + SUBNET_MASK
• Actions:

– Re-Write [SRC_MAC (Interface)], Re-Write [DST_MAC (Nexthop)]
– Forward [Port-out(Interface)]

Longest Prefix Match (LPM)
• Add priority to flow entry based on the length of the subnet mask

In OpenFlow 1.1:
• Addictional actions: TTL decrement, checksum update
• Multiple-Table: Table[0] Matches DST_MAC, Table[1] Matches DST_IP

Virtual Environment

• V1 used TUN/TAP devices and payload
encapsulation in the RF-Protocol

• V2 manages VM connectivity through an OpenFlow-
capable soft-switch

• Routing engines (e.g. Quagga) exchange routing
protocol packets
• Two modes of operation for VM packet exchange:
• UP: Directly through the OVS (requires Topology Disc)
• DOWN: Through the physical switches

• Centralized but logically distributed
• Can be physically distributed

• Support of different virtualization technologies
• From QEMU to LXC

• VM-OVS Attachment Discovery Protocol

VM DP port OVS
port

1 1 1 ?

1 1 2 ?

1 1 3 ?

2 2 1 ?

2 2 2 ?

2 2 3 ?

...

n n 3 ?

OF-DP [n]. . .

RF- Server

OVS

 VM 1
1
2
30

 VM 2
1
2
30

 VM n
1
2
30

1
2
3

4
5
6

7
8
9

RF - Controller

RF
slave

RF
slave

RF
slave

NOX

OF-DP [1] OF-DP [2]
1 2 3

3

1 2 3 1 2 3

RF-Slave: Interface Attachment discovery (1)

Mapping Table

 Discovery of VM interfaces
attachment to OVS.

 Virtual interfaces are
dinamically attached to the OVS

– No guarantee of order

– VMs may have an arbitrary
number of interfaces

 When VM registers to the RF-
Server the OVS ports in use are
unknown.

RF-Slave: Interface Attachment discovery (2)

 Discover the VM interfaces (ETHX)

 RF-Slaves sends discovery frames to all ifaces except ETH0;

 OVS forwards the packet-in to RF-Controller along the OVS
port-in information.

 RF-Server sets the mapping of VM-DP-Port-OVS_port.

RF- Server

 VM 1
1
2
30

RF
slave

OVS

1
2
3

4
5
6

 VM 2
1
2
30

RF
slave

vmId intfdst src type

Frame:

+ in_port (ovs)

Ethernet RF

RF - Controller

NOX

VM DP port OVS
port

1 1 1 1

1 1 2 2

1 1 3 3

2 2 1 4

2 2 2 5

2 2 3 6

The RouteFlow protocol

• Allowing a loosely couple architecture with two
simple interfaces:

• Protocol between RF-Server and RF-Slave
• VM registration and configuration,
• Generate OpenFlow rules:

• Translate changes in IP and ARP tables into
OF modification messages.

• Protocol between RF-Server and RF-Controller
• Basically, an API to controller OpenFlow stack

• Subset of OpenFlow commands and events
• Plus VM-OVS attachment discovery event

• In short, an IPC/RPC mechanism
– Application-level on top of TCP, Client-Server,

Assynchronous, Without Confirmation

Evolving to Apache Thrift & REST + JSON

srvId vmId type length

RF Base Header

wildcards dpId mode nports

RF VM Config Msg
RF Base
Header

netMask outPort srcMAC dstMAC

RF IP Flow Config Msg
RF Base
Header

netAddr

RF-Protocol: Frame

API between RF-Controller and RF-Server

Group Type Payload

EVENT packet_in datapath_id (8 bytes)
port_in (2 bytes)
pkt_id (8 bytes)
type (4 bytes)

EVENT datapath_leave datapath_id (8 bytes)

EVENT datapath_join datapath_id (8 bytes)
no_ports (4 bytes)
hw_desc (100 bytes)

EVENT link_event reason (1 byte)
dp1 (8 bytes)
port_1 (2 bytes)
dp2 (8 bytes)
port_2 (2 bytes)

EVENT map_event VmId (8 bytes)
VmPort (2 bytes)
OvsPort (2 bytes)

COMMAND flow datapath_id (8 bytes)
flow_mod (2036 bytes)

COMMAND send_packet datapath_id (8 bytes)
port_out (2 bytes)
pkt_id (8 bytes)

VM Registration and Configuration

Flow Modification messages

Agenda

• Background: OpenFlow, Logical/Virtual Routers, Network Virtualization
• Project Overview
• Motivation
• Architecture

– Controller
– Server
– Slave
– Protocol

• Evaluation
• Work ahead
• Demo and hands-on Tutorial

NetFPGA-based testbed evaluation

NOX
OpenFlow-
Controller

RF-Server

5 x NetFPGA “Routers”

Prototype evaluation

• Setup

• NOX controller

• Quagga routing engine

• 5 x NetFPGAs

• Results

• Interoperability with traditional networking gear

• Route convergence time is dominated by the protocol time-out
configuration (e.g., 4 x HELLO in OSPF) not by slow-path operations

• Larger latency only for those packets that need to go to the slow-path:

• Lack FIB entry, need processing by the OS networking / routing stack e.g., ARP, PING,
routing protocol messages.

Caveat: Lab-scale conditions!
• Low-latency links to RF-Controller

• No cross-traffic

• No CPU competition in OF switches

• Small FIBs, few topology changes

Experimental results: Route Convergence

Scaling the Virtual Environment

Evaluation of the Virtualization Environment

The Path Ahead

• OpenFlow 1.1
• Controller API: Rest-API JSON & Apache Thrift
• Advancing the IP Network Virtualization

– Protocol Optimization, Modes of operation, Router Migration
• Scalability and Resiliency
• System Limits and Stress testing
• Live Trials

– Reality-Checks at Scale

• Embrace related work (past & ongoing)
– SoftRouter, VROOM, DROP, FIBIUM, ONIX, etc.

• Build a community!
– Student Projects corner (https://sites.google.com/site/routeflow/projects)

Protocol Optimization

• Separation of concerns between topology maintenance and routing
state distribution

– E.g. HELLOs sent “down” while LSA are kept “up”
– E.g. BFD-like fault detection substitute HELLOs

Resiliency and Scalability

• Distributed Virtual environment with distributed OVS for load balancing,
replication, and advanced VM management (e.g., migration)

• NoSQL-like distributed database for core RouteFlow state
• Multi-controller environments
• Fault-tolerance: Master / Slave, Master / Master, ...?

System limits and Stress testing

• Increase network size
• Increase flowmod/sec

• Variable OpenFlow control packet handling / processing:
Impact on Routing Protocol?
Impact on topology maintainance protocol, e.g., LLDP-based?

• Scale limitation (Flow table size) of logical / large routing tables
• Smart shared multiple table lookup in OF.1.1
• Smart caching, hybrid software-hardware flow state
• Related Work (e.g., ViAggre)
• etc.

Advancing the Use Cases and Modes of Operation

• From logical routers to flexible virtual networks

 Aggregated Router

• Scenarios:
– a single BGP router aggregating a number of OpenFlow switches
– L3 services in data center distributed single virtual switch

• Distributed lookup?
– E.g., Smart FIB generation and distribution

• Intra-router switching strategy?

FIB

FIB'

FIB'

FIB'

FIB'
FIB'

NaaS - Network-as-a-Service

NaaS - Network-as-a-Service

• Enabling Virtual networks as a Service
• Many open research questions and

ongoing work (e.g., Quantum @ OpenStack)
• CloudRouteFlow as a Service?

DYNAMIC CONVERGED SERVICESDYNAMIC CONVERGED SERVICES

RouteFlow
(L2/L3 packets)

SPIDER
(L1/L2 circuits)

NOX

CPqD Dynamic Converged (Packet and Circuits) Services

Packet
Switch
Packet
Switch

WDM
Switch
WDM

Switch

WDM
Switch
WDM

Switch

WDM
Switch
WDM

Switch

Packet
Switch
Packet
Switch

Goal: Common control plane for Layers 1 to 3 networks aiming at NaaS, RaaS, VNO
Approach: OpenFlow + RouteFlow + SPIDER (virtualization comes in a subsequent phase)

OpenFlow
Protocol

OpenFlow
Protocol

FIBRE: FI testbeds between BRazil and Europe

• Joint EU-Brazil project between 9 partners from Brazil (6 from GIGA), 5
from Europe (4 from Ofelia and OneLab) and 1 from Australia (from
OneLab)

– Design, implementation and validation of a shared Future Internet
sliceable/programmable research facility, supporting the joint
experimentation of European and Brazilian researchers.

• The objectives include:
• the development and operation of a new experimental facility in Brazil
• the development and operation of a FI facility in Europe based on

enhancements and the federation of the existing OFELIA and OneLab
infrastructures

• The federation of the Brazilian and European experimental facilities, to
support the provisioning of slices using resources from both testbeds

• Officially started on Oct 1 2011
• Duration: 36 months

FIBRE site in Brazil

OFELIA-enabled Experiments

• One RouteFlow platform running in each OpenFlow island
controlling only the OpenFlow switches in the same facility.

• Experiment outputs: Platform behaviour in geo-distributed
setup, route convergence times, interoperability tests

OFELIA-enabled Experiments

RF-Server

• Only one RouteFlow platform running in a single facility at a
time and controlling OpenFlow switches from every facility.

• Experiment outputs: Protocol behaviour under remote
operation, route convergence times, slow-path performance

Experimental work Current Ofelia-enabled

Scale 5 to 10 x 4-port NetFPGAs 10s of OpenFlow switches

Equipment Software-based switches,
NetFPGAs

Multi-vendor commercial
OpenFlow switches

Realism Few, small topologies
Synthetic traffic (control +
user) and failures

Geo-distributed topologies
Real traffic (control &
data) ?
and failure scenarios

Performance Fidelity Low latency LAN Variable network conditions

Reality check at Euro-scale

Demo @ ONS 2011

Pronto 3240/3290

Indiana
University

Tutorial 2

Tutorial 2

 RouteFlow proposes a commodity routing architecture that combines

the line-rate performance of commercial hardware with the flexibility

of open-source routing stacks (remotely) running on PCs;

 Allows for a flexible resource association between IP routing

protocols and a programmable physical substrate:

 Multiple use cases around virtualized IP routing services.

 IP routing protocol optimization

 Migration path from traditional IP deployments to software-defined networks

Conclusions

Thank you!

Ask and contribute!
 routeflow-discuss@googlegroups.com

Learn more!
https://go.cpqd.com.br/routeflow

Get the Code!
https://github.com/CPqD/RouteFlow

Questions?

Christian Esteve Rothenberg
esteve@cpqd.com.br

+55 19 3705-4479

BACKUP

Proposed experiments

Mainly two types of experiments:

1. One RouteFlow platform running
in each OpenFlow island
controlling only the OpenFlow
switches in the same facility.

2. Only one RouteFlow platform
running in a single facility at a
time and controlling OpenFlow
switches from every facility.

The resulting combination of scenarios will allow to validate the
scalability and performance limits of the remote operation of the
IP routing stacks provided by RouteFlow.

Interop Experiments & Realistic
Router Virtualization

Normal L2/L3 Processing

 FIB

Production VLANs

Research VLAN 1

OpenFlow-
Controller

+

FlowVisor

Research VLAN 2

RF-Server

 FIB

Expected results

• Technical viability: Exploring the scalability and performance limits

• convergence times not penalized by remote routing protocol stacks.

• suitable distribution of control plane entities and the physical counterparts.

• real-world networking conditions (e.g., latencies, failures, traffic)

• Interoperability and generality of RouteFlow

• different open-source routing protocol stacks (XORP and Quagga),

• different virtualization technologies (e.g., LXC and QEMU)

• different OpenFlow controllers (e.g., NOX and Beacon),

• all inter-working with commercial OpenFlow-enabled switches and legacy
networking equipment.

• Assessment of the OFELIA testbed facilities

• E.g., Capabilities of the Expedient CMF, effective resource sharing,
controller application deployment, etc.

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61

