RouteFlow

Virtualized IP Routing Services Iin
OpenFlow networks

Agenda \‘c“i,
* Background: OpenFlow, Logical/Virtual Routers, Network Virtualization"

* Project Overview

* Motivation

* Architecture
— Controller
- Server
— Slave
— Protocol
* Evaluation
* Work ahead

e Demo and hands-on Tutorial

Routefllow

The Project

RouteFlow Is an open-source project to provide IP routing
& forwarding services in OpenFlow networks

CPgD UniRio Unicamp Indiana University
Marcelo Nascimento Carlos Corréa Mauricio Magalhaes Stanford University

Christian E. Rothenberg Sidney Lucena UFSCAR
Marcos Salvador UFPA
Eder Leao Fernandes

Rodrigo Denicol

Alisson Soares

EJ riNep FUNTTEL

About CPgD

\RP

Major telecom R&D center in LATAM with expertise in various areas:
- Optical (WDM, PON), Wireless (WiMax, LTE), IP (IMS/NGN, OpenFlow), OSS/BSS, Digital TV...
— Today with ~1200 highly-skilled employees

Created in 1976 as R&D branch of Telebras - Brazilian telecom monopoly

Private foundation since 1998 after Telebras was privatized

Purpose to foster innovation to help (mainly) Brazilian companies and society
- Focus on technology R&D
— Bridge the gap between universities and
the industry

* Near highly-ranked universities in Brazil
— History of collaborations

Routefl|ow

About the GIGA Project Testbed

| b
"k

14

A ¥

i iy § ¥ A / -
s . - Ay j ~
i Sy L
.8 -Camplnas L i /L,—J\J’ﬂ-;!!_;_»—i e " "‘_. o
- j," b =

-~

'

.'.,__.-.-'

= .-"] L e = ..- [
‘e Sé"ord osé,dos:Campos™

A
i =

800km total fiber span over 7 cities in 2 .
states (SP, RJ)

66 labs from 26 institutions connected
(fiber to the lab) at 1 and 10 Gbps

Manually provisioned (VLAN) circuits for °
stable traffic

T

/ N
: SNl |)

FJFINEP FUNTTEL

& Ciéncia e Tecnologia Comunicacoes
Ministério da Ciéncia e Tecnologia Ministério das Comunicacoes

I\L o Volta Redonda
: i -‘i 3
gy S Tl

" -"~.
e : i

.

e2e dynamic (VLAN) multidomain tected
circuits for L2 and above on demand
experiments

Manually provisioned wavelengths for L1 and
above experimentation

Focus on technology R&D and the industry

RouteFlow Project Timeline \

,-19
\ PN

O
pid s R\ R

L ® -

» Start Msc. Thesis * Open-Source
work by Marcelo N. Release

* First Prototype « Evalaluation on * Demos @ ONS11

. Eirst Short-P NetFPGA testbed * Tutorial & Demo @
TSt SHOT-Faper OFELIA/CHANGE SS

@ WPEIF * Indiana University

* QuagFlow Poster - Pronto OF
@ SIGCOMM switches + BGP * Demo @ |
peering with SuperComputing 11

Juniper MX * Nation-wide field trials

(Brazil, Internet2)
@ ONS12

* RouteFlow +
OpenStack

@ (Cloud RouteFlow)

... building a community

°g o
< t‘? s L, 1
o 2P0 ate
® s- ‘.
Visits - .. ’

+ NN

1,390 visits came from 333 cities

189

days since

’ Routeflow Project Launch Apache-licensed code @ github

http://go.cpqd.com.br/routeflow/

\ (RP

Overview

RouteFlow Server Controller

Quagga
OSPF / RIP / BGP
Virtual Topology

— -

Legacy Network

i
|
I
|
I
|
|

o pa U = Programmablg
Programmable
Switch

Programmable
Switch

R oY
Programmable™
Switch

Routellow

\ (P

Motivation v1 \

Original motivation around RouteFlow (formerly QuagFlow)
(Seeded in experience building a Broadcom-based L2/L3 switch prototype)

* Current “mainframe” model of networking equipment:
* Costly systems based on proprietary HW and closed SW,
* Lack of programmability limits cutomization and in-house innovation;
* Ossified architectures.

* Goal: Open commodity routing solutions:
+ open-source routing protocol stacks (e.g. Quagga)
+ commercial networking HW with open API (i.e. OpenFlow)
= line-rate performace, cost-efficiency, and flexibility!

(

Current router architectures

' \ B2y

Management

ﬁ Telnet, SSH, Web, SNMP ﬁ

Control Logic

Hardware

Routellow

OpenFlow model

\ RPD

Control Logic
Management Controller
O.S.
Standard API (i.e. OpenFlow) @
St Switch

Hardware

(\“ Routerlow
\

Motivation v2 \

* A transition path, incrementally deployable:
from current IP networks to SDN

* Hybrid modes of operations: traditional IP control planes along SDN

* Innovation around IP control planes
* Simplified network mgm, protocol optimization, shadow networks

* Advancing IP Network Virtualization
* From flexible Virtual Routers to IP Network-as-a-Service

A

aPD

Use Cases

Logical Split Router Router Multiplexation Router Aggregation
(1:1) (1:n) (m:1 or m:n)

Virtual Network Provider

(Network Slices) S/‘%/
L

4 Fd
%M;{: —
> = == Z 7 7 7

Infrastructure Provider
(Physical Substrate)

S-S o o ——— |

RoutefFlow

Architecture

[s
: — kernel space |
IS=] i
! I |
| VR | rable Tone ~ Key Features
i ¥ 3 : :
| RouteFiow | | [Rouis - * Separation of data and control planes;
| Slave Engne |l Virtual |
L e =m== Envionment;« | gosely coupled architecture:
OpenFlow | RouteFlow Protocol e Three RF componentS'
! * e .
| Rotiemow sl 1. Controller, 2. Server, 3. Slave(s)
: I RouteFlow Protocol . .
e gy ¢ Unmodified routing protocol stacks;
| & | onroer || 5 L 5 || coneronier » Routing protocol messages can be sent
| Network Controller | ‘down' or kept in the virtual environment;
oy * Portable to multiple controllers

- RF-Controller acts as a “proxy” app.

| . sofware
| 1 software

o |D|"‘" | erogrammasiel Multi-virtualization technologies

[]],| Swiehes * Multi-vendor data plane hardware

HW Table & |

1

-
A
= ko] —

hardware

RF-Controller application

— kernel space
— kernel space
+—I

kernel space

kernel space

* Shim application on an OpenFlow controller o=
* Mainly acts like a proxy for the OpenFlow API || ¥ THIEH | tave | Taie i

n<O
|

: ¥
* Interacts with the OpenFlow datapaths RouteFiow | | —
. ave ngine Virtual
* Filters relevant events to the RF-Server = == = Swmss [Environment.
* Receives flow mod commands - OpenFlow | RouteFlow Protocol
. . D D ; L'
* Delivers traffic to/from VM interfaces via OVS - [RouteFow server
: * RouteFlow Protocol

—— TE————S———"——
| i [RouteFlow |[AP. AP. i
i ¥ Controller 1 || n Controller |
| Network Controller :
i OpenFlow
iF { L software -i
i | . sofware |
: ! ‘I' soﬂs\.:aﬂ::re — i
i API | Driver | L[Prﬂsiilw"%':;'t':;gblei
i PORT 1 e | i
i PORT 2 || HW Table e | i
: OB LT harcware = i

RouteFlow Server

* The “brain” of RouteFlow;
* Manages available virtual machines (VM);
* Configures the virtual environment
* Receives events from the RF- controller

— Switch join/leave, packet-in;
* Associates VMs and OpenFlow switches;
* Determines packet delivery from/to VMs

* Requests flow installation / modification in
OpenFlow switches.

<]

Virtual

LSer space Environment

| — kernel space
: — kernel space

| — kernel space

| kernel space

: o o ARP Route

| Y TS| Table Table

| s — [

: Y ¥

| RouteFlow J Route

| Slave Engine

A ;

— — — — — — —————— '_ ____________________________

, OpenFlow | RouteFlow Protocol

¥

I
I
1 -
" RouteFlow Server
I
1

T RouteFlow Protocol

| RouteFlow AP.
" Controller 1

MNetwork Controller

sotware

| 1 sofhware

T sotware

HW Table

| o

|

|

|

|

I API Driver
: ——
|

|

|

|

|

U

-

AJ
==
= | N

hardware

Programmable
Switches

RF-Server: Association of VMs and DPs

\\RP

1 11
2 {2
3
1 14
2 {58 ovs
3 {6
1 L 7
2
3 {9
(D
] S 52 gy
— : > gru-- Server RF - Controller " 2
NOX
l’i\’
Switch Switch = Switch
OpenFlow OpenFlow . u OpenFlow
[1] [2] [n]

RF-Server: Flow of Routing Control Packets

\\RP

K 14l
< 17
rt 3
A 1 1 1 (1 [4
A 1 2 2 S % OVsS
A 1 3 3
B 2 1 4 1 1 7
2
B 2 2 5 3 9
l’é\’
C 3 3 9 v P
~r- Server =N RF - Controller '5)
oy -
Mk NOX
‘2
Switch Switch N Switch

1) OpenFlow OpenFlow . OpenFlow
Routél 1] 2] [n]

RouteFlow-Slave

Runs as a daemon in Linux-based VM
Registers the VM with the RF-Server
Configures the VM (e.g., interfaces)

Listens to ARP and IP table updates via
Linux Netlink events

- Linux Routing stack independent
(Quagga, XORP)

Translates routing updates into flow rules;
— Match: DST_MAC + DST_IP + MASK
— Actions: Re-write MACs + port-out
Translates ARP entries into flow rules
— Match: DST_MAC + DST_IP
- Actions: Re-write MACs + port-out

Sends flow update commands to RF-
Server

Runrs VM-OVS attachment discovery

N~ N~ |

o Fwewe] |
: — kernel space]
: — kernel space :
kernel space |
i 3 || g% ARP Route :
| g e [Table [Table !
| 1 |
: Y * I
| RouteFlow J Route |
| Slave Engine Virtual |
A A serspace | Environment
R e — L s e
, OpenFlow | RouteFlow Protocol
. Y
! -
" RouteFlow Server
1 A
: : RouteFlow Protocol
e — y
| i [RouteFlow |[AP. AP. I
i ¥ Controller 1 || n Controller i
| Network Controller :
— —————
I OpenFlow
r { L software -i
: | sotware |
[| i oftware I
: ¥ software - :
— |
I API | Driver | | [] [Programmable,
! Switches |
: PORT 1 e | :
| PORT 2 HW Table s | |
[PORT n e | l
: harcware |

RF-Slave: VM configuration

VM
ARP ROUTE

Table Table

Route
Engine

—
—

RouteFlow |—
Slave e s —
e

= Cofigure the amount of interfaces (enable/disable);

= Start/Stop Routing Engine;
" Clean interface configuration and ARP/ROUTE tables

@

RF Add/Remove Routes \‘CE”

1§
VM ovs 2
A 1 1 1 (1 [4
A 1 2 2 S % OVsS
A 1 3 3
B 2 1 4 1 [7
2
B 2 2 5 3 o
i 3"
C 3 3 9 =)
~r- Server RF - Controller
NOX
l’i\’
Switch Switch =7 Switch

OpenFlow OpenFlow s s = OpenFlow
[1] [2] [n]

IP Forwarding Rules in OpenFlow \

RF-Slave info from the Linux network stack

* Route =IP + MASK [Rede]+IP[Gateway]+Interface

* ARP= IP[Host]+MAC[Host]+Interface

OpenFlow 1.0 entry:

e Match: DST _MAC + DST _IP + SUBNET MASK

* Actions:
- Re-Write [SRC_MAC (Interface)], Re-Write [DST_MAC (Nexthop)]
— Forward [Port-out(Interface)]

Longest Prefix Match (LPM)

 Add priority to flow entry based on the length of the subnet mask

In OpenFlow 1.1:

* Addictional actions: TTL decrement, checksum update

* Multiple-Table: Table[0] Matches DST_MAC, Table[1] Matches DST_IP

(

Virtual Environment

* V1 used TUN/TAP devices and payload
encapsulation in the RF-Protocol .

* V2 manages VM connectivity through an OpenFIowJE
capable soft-switch

* Routing engines (e.g. Quagga) exchange routing
protocol packets
* Two modes of operation for VM packet exchange:
* UP: Directly through the OVS (requires Topology Disc)
* DOWN: Through the physical switches

* Centralized but logically distributed
* Can be physically distributed

* Support of different virtualization technologies
* From QEMU to LXC

* VM-OVS Attachment Discovery Protocol

(

--------------------- I
|
|
|
|

2 1|
> I
o A
< 'E :
2 @ |,
2 = I
) s |,
o 2
(4] L
£ 13 |1
(o] |
n |
|
|
1
I
|
|

é OpenFlow RF-ProtocoI;

RouteFlow- RouteFlow-
< >

Controller Server

OpenFlow

Controller

Ry

RF-Slave: Interface Attachment discovery (1) \

= Discovery of VM interfaces
attachment to OVS.

VM DP port OVS

port

)) Mapping Table
" Virtual interfaces are Sl

dinamically attached to the OVS - .
1 1
— No guarantee of order .
— VMs may have an arbitrary . | siave [\/M] 1
number of interfaces —
2 2 I'— (4l
= When VM registers to the RF- B : e VM 212 OAES
Server the OVS ports in use are]
unknown. % —stave_\/M nﬂ_
n n ?
RF- Server RF - Controller
NOX
OF-DP [1] OF-DP [2] OF-DP [n]
O 2 E| | O3 & Q @ &

RF-Slave: Interface Attachment discovery (2) \ (RD

Frame: RF L1l [l
vM1 [2 [2]
Ethernet RF | Lo KE K
dst || sSrc " type || vmId " intf | RF 1 4 s
slave | vM2 [2 [5
+ in_port (ovs) Lo KE L 6
RF- Server RF - Controller VM DP port SXE
NOX 1 1 1 1
. : 1 1 2 2
= Discover the VM interfaces (ETHX)
1 1 3 3
" RF-Slaves sends discovery frames to all ifaces except ETHO;
2 2 1 4
" OVS forwards the packet-in to RF-Controller along the OVS - 5
port-in information.
2 2 3 6

@' RF-Server sets the mapping of VM-DP-Port-OVS_port.

The RouteFlow protocol N
* Allowing a loosely couple architecture with two | = BT |
simple interfaces: [| [ree] | LH |
l 1] < | Table aole | LT |
* Protocol between RF-Server and RF-Slave ST ,Jr == ;
. ; . ; | RouteFlow Route e |]
* VM registration and configuration, = Slave Engne Nl Virtual
L —— = E U]
* Generate OpenFlow rules: ;OpenFlow | RouteFlow Protocol
Translate changes in IP and ARP tables into | RouteFiow Server
OF modification messages. ; * RouteFlow Protocol
—t ¥ |
* Protocol between RF-Server and RF-Controller | [FouteFrow] e e :
] v ontroller | n Controll |
- Basically, an API to controller OpenFlow stack | Network Cortroller e
Subset of OpenFlow commands and events R R —
Plus VM-OVS attachment discovery event - — — i
. | 1 software l
* In short, an IPC/RPC mechanism - [owe |"'ﬂ | H{Programmabie!
— Application-level on top of TCP, Client-Server, e [] Svere
Assynchronous, Without Confirmation o-u | Il 3 |

@ Evolving to Apache Thrift & REST+JSON |

RF-Protocol: Frame

RF Base Header

o\ - -
N -
N -

N -

N

RF VM Config Msg
RF Base

RF IP Flow Config Msg
RF Base

@ Routeflow

API between RF-Controller and RF-Server

¥

RouteFlow Server

-~

T RouteFlow Pri
________ .

RouteFlow
Controller

AP.
1

Al
) L

Metwork Controller

Routefl|ow

EVENT packet_in

EVENT datapath_leave
EVENT datapath_join

EVENT link_event

datapath id §8 bytes)
port_in (2 bytes)
kt 1d (8 bytes)
ype (4 bytes)

datapath_id (8 bytes)

datapath_id (8 bytes)
no_ports (4 bytes)
hw_desc (100 bytes)

reason (1 byte)
dpl (8 bytes)
port 1 (2 bytes)
dp2 (8 bytes)

\RP

EVENT map_event

port_2 (2 bytes)

Vmld (8 bytes)
VmPort (Z bytes)
OvsPort (2 bytes)

COMMAND flow

COMMAND send_packet

datapath |d8 bytes)
flow mod’ (2036 ytes)

datapath_id (8 bytes)
port out bytes)
pkt 1d (8 ytes)

VM Registration and Configuration

\\®P

RF-Slave RF-Server
$ 4
RFMessage (register)
—
Check VmId
~FMessage (acceP!)
S
REVMMsg (reseh)
S
_ M Datapath Join
RFVMMSQ (conﬂg)
M Datapath Leave
REVMMsg (reset
-t

Routellow

Flow Modification messages

\RP

RF-Slave RF-Server
¢ ¢
New Route R
g [28 (fow_intany
New Host o
e | REFIOWMsg (o, gt
~—
Route Removed
i A R RFFlowMsg (flow_remove)
—

Host Expire "

ignored

Routefl|ow

Agenda

» Background: OpenFlow, Logical/Virtual Routers, Network Virtualization &
* Project Overview
* Motivation

* Architecture
— Controller
— Server
— Slave
— Protocol
* Evaluation
* Work ahead

e Demo and hands-on Tutorial

Routeflow

NetFPGA-based testbed evaluation”'

RF Server NOX
F‘E. OpenFlow-
PERN= Controller

*a
L]
L R2 e R4
. "o,

10.1.0.0/ 24 eﬂl.ﬂ.ﬂ.ﬂrﬂ @i

. H2

3 10.5.0.0/24
10.3.0.0 /24 10.4.0.0/ 24
10.7.0.0/ 24
10.2.0.0/ 24 40.0.0.0 /24 |
N
H3

R3
5 x NetFPGA “Routers”

Prototype evaluation Ty

* Setup
e NOX controller

* Quagga routing engine
* 5x NetFPGAs
* Results

* |Interoperability with traditional networking gear

* Route convergence time is dominated by the protocol time-out
configuration (e.g., 4 x HELLO in OSPF) not by slow-path operations

* Larger latency only for those packets that need to go to the slow-path:

(

* Lack FIB entry, need processing by the OS networking / routing stack e.g., ARP, PING,
routing protocol messages.

Experimental results: Route Convergence

\RP

Virtual Route Engine Hardware
Machine (Next Hop) (OF Switch)
Sl isisisisisisisiaiuisiainis Rl
Hello Msg——b} Teropag.
Rout L ——>}Th I
oute ello
Engi 1. . | ’
ngine Link Fail Detected 5‘_: __b-
T2 T LSupdatei-..! o
= Cale. Routes Caveat: Lab-scale conditions!
T3 -
RouteFlow | Update Detected ;<> * Low-latency links to RF-Controller
Slave + = Flow Install Msg
Controller T4 - : — * No cross-traffic
Traffic OK L -----------------------:'-0 * No CPU competition in OF switches
* Small FIBs, few topology changes
Hello Time T [s] Tr+T5 [s] T4 [s] Tiotal [8]
OSPF Ted. Toos% || Tmed. | Too% ||| Tmed. | Toox Thed. Toog
| sec. 3.249 3.923 0.360 | 0.398]| 0.070 | 0.123 3.700 4.373
5 sec. 16.713 | 18.937 || 0.320 | 0.389 (| 0.057 | 0.099 ||| 17.135 | 19.308
10 sec. 36.406 | 37.846 | 0.358 | 0.497 || 0.042 [0.106 ||| 36.807 | 38.266

4[N\
/
/
\ ™)] [|
| by S “ 7 e?w — M\ A /
AVN9,.0 s
| | B SN A" A L\YA I\ VYV
S /

Scaling the Virtual Environment

L@- M Q ¥M !aggt VM i:ggl
! ! ! r
4

4“

®- @ @---

"'lul Quagga 'ﬂl Quagga ’{'M Quagga
i ! J I = = = Conectividade bridge/OVS
¥M Quagga VM Quagga VM Quagga VM Quagga

UNIRIO

Univarsdade Federal do
[Egtada do Rio de Janeino

Routeflow

Evaluation of the Virtualization Env”i'ronment

L1
100
t4]
80
w13
S E
3 F 1 8 Dbconnection
= 40 . i - ' 8 Recorrection
=
= |
5 o i : i : : : Z
s an g and EvE 42
o
1 1= rL] a1 3 71 L] £ 112 DpeniZ: Bridges LHC+HDrciges LKD+OVE
Timne |5{
{a} CPU utilization (b} Comvergence after connectivity modification events
Fig. 3. Gnd topologies” CPU use and link events convergence details
500 zan
30 | 450
a0 100
am0 350
F 30 | =
E 250 1 15D
£ 200 | F 100
100
100
S0 ¢
[—— - - = - . ' '
a N | “mm o |
b et i tud b . 15-node ISnode 35ode 15-nede 25.n0de 35edds | 15nnda 25-ncds 35-node
OpentT+ bridges LXC+ bridges LA+ 0vE Qpen'? + bridpes MG + bricees LEG 4 @
() Initial comvergence on grid topologies (b} Initial convergence on full-meshed topologies
Fig. 4. Imtial O3PF convergence for both connectivity layouts evaluated
5

25

20 20
i5 i5
10 10
IEEEEEEEE N

1%-node | 23-node | 35-nod= | 15-nods | 23-node

Time (5|
Time (s

35-node | 15-node | 25-node | 35-nod= 1%-node | 23-node | 35-node | 15-nods | 23-node | 35-node | 15-node | 25-node | 35-node

OpenZ + bridaes LG + biridpes LEC+ O3 OpenZ + bridaes LG + bridpes LEC+ 0%5

{a} Convergence after disconnection of a node (b} Convergence after reconnection of node

The Path Ahead \\(RD

* OpenFlow 1.1
* Controller API: Rest-APlI JSON & Apache Thrift
* Advancing the IP Network Virtualization
— Protocol Optimization, Modes of operation, Router Migration
* Scalability and Resiliency
e System Limits and Stress testing
* Live Trials
— Reality-Checks at Scale
* Embrace related work (past & ongoing)
— SoftRouter, VROOM, DROP, FIBIUM, ONIX, etc.
* Build a community!
— Student Projects corner (https://sites.google.com/site/routeflow/projects)
(e

Protocol Optimization \\CR’.,

0 Separation of concerns between topology maintenance and routing
state distribution

— E.g. HELLOs sent “down” while LSA are kept “up”
— E.g. BFD-like fault detection substitute HELLOs

’ Routel-low

o,

RouteFlow Server Controller

Quagga

& OSPF / RIP / BGP

Virtual Topology

Legacy Network

B
Programmable
Switch

Physical Infrastrﬁéture i

Switch

Resiliency and Scalability

\(RD

0 Distributed Virtual environment with distributed OVS for load balanéing,

replication, and advanced VM management (e.g., migration)
s NoSQL-like distributed database for core RouteFlow state
. Multi-controller environments
. Fault-tolerance: Master / Slave, Master / Master, ...7?

\f/—\{ I: T RouteFlow Server Controller
Quaggaz
& OSPF / RIP / BGP &
| .Vlrtual Topology j_ga/ =

Legacy Network

Programmable =
Switch i Ty Lecacy L2/L3 Switch

Programmable. =
Switch

Routefllow

System limits and Stress testing \

* Increase network size

* |ncrease flowmod/sec

Variable OpenFlow control packet handling / processing:
Impact on Routing Protocol?
Impact on topology maintainance protocol, e.g., LLDP-based?

* Scale limitation (Flow table size) of logical / large routing tables
* Smart shared multiple table lookup in OF.1.1
* Smart caching, hybrid software-hardware flow state
* Related Work (e.g., ViAggre)
* etc.

(

Advancing the Use Cases and Modes of Operation

* From logical routers to flexible virtual networks

Logical Split Router Router Multiplexation Router Aggregation
(1:1) (1:n) (m:1 or m:n)

Virtual Network Provider

(Network Slices) S/%/
s

Infrastructure Provider
(Physical Substrate)

S ——————— |

Aggregated Router \\\c“i,
* Scenarios: |

— a single BGP router aggregating a number of OpenFlow switches

— L3 services in data center distributed single virtual switch

* Distributed lookup?
- E.g., Smart FIB generation and distribution

* Intra-router switching strategy? Router Aggregation

(m:1 or m:n)

FIB

FIB’ FIB'

FIB' | | FIB'
Routefl|ow

FIB'

NaaS - Network-as-a-Service

Virtual control plane

Virtual Switch
1

Virtual Switch
2

Network controller
Routeflow

NaaS - Network-as-a-Service

\ By

Enabling Virtual networks as a Service

* Many open research questions and
ongoing work (e.g., Quantum @ OpenStack)

CloudRouteFlow as a Service?

Virtual control

plane
/

Virtual control plane
abstraction layer

000

Web management
interface

Network
controller

= .

Routing configuration
database i

CPgD Dynamic Converged (Packet and Ciréuits) Services

Goal: Common control plane for Layers 1 to 3 networks aiming at Naa$S, Raas, VNO: . |
Approach: OpenFlow + RouteFlow + SPIDER (virtualization comes in a subsequent phase)

DYNAMIC CONVERGED SERVICES

L L2/L3 packets) . (L1/L2 circu

NOX

OpenFlow
OpenFlow Protocol

Protocol E
WDM |
Switch S
—dCKC WDM WDM
Switch Switch
RoutefFlow

FIBRE: FI testbeds between BRazil and Europe \ P’

* Joint EU-Brazil project between 9 partners from Brazil (6 from GIGA), 5
from Europe (4 from Ofelia and OneLab) and 1 from Australia (from
OneLab)

- Design, implementation and validation of a shared Future Internet
sliceable/programmable research facility, supporting the joint
experimentation of European and Brazilian researchers.

* The objectives include:

. the development and operation of a new experimental facility in Brazil

. the development and operation of a Fl facility in Europe based on
enhancements and the federation of the existing OFELIA and OnelLab
infrastructures

. The federation of the Brazilian and European experimental facilities, to
support the provisioning of slices using resources from both testbeds

* Officially started on Oct 1 2011
* Duration: 36 months

RNP Ipé
N e
= GIGA
Kyatera

Ll

FIBRE Common Resources

Wireless Testbeds

=
O
Ll
O
sl
)
e
(a4

Site-Specific Resources

=
=
m
=
L
0
LLI
i
0
LL

OFELIA-enabled Experiments

\\®P

* One RouteFlow platform running in each OpenFlow island
controlling only the OpenFlow switches in the same facility.

ooof

* Experiment outputs: Platform behaviour in geo-distributed
setup, route convergence times, interoperability tests
Routerlow

OFELIA-enabled Experiments

' \(Ei)

Only one RouteFlow platform running in a single facility at a
time and controlling OpenFlow switches from every facility.

* Experiment outputs: Protocol behaviour under remote

operation, route convergence times, slow-path performance
Routerlow

Reality check at Euro-scale

Experimental work
Scale

Equipment

Realism

Performance Fidelity

Current
510 10 x 4-port NetFPGAs

Software-based switches,
NetFPGAS

Few, small toPoIogies
Synthetic traffic (control +
user) and failures

Low latency LAN

Ofelia-enabled
10s of OpenFlow switches

Multi-vendor commercial
OpenFlow switches

Geo-distributed topologies
Real traffic (control &
data) ? .

and failure scenarios

Variable network conditions

@ OFELIA

ONS 2011

5 » CIC Roule! |
€ o Testpoint 3

Indiana
University

Pronto 3240/3290

‘ g ..
i y. 4 J“." ;
R g, B T : s Rodter”
juiteFloweh Routerdh SR i o e FiGwiB Ra LT 4T
€ jomn . y

of .

it <% ¢

RouteFlow D'Router v

| 45}
#a's
o

A
g d!mall-chsma“@sw ~—5sh — 1328

Eye ai 30763 mj

Tl

Routellow

Tutorial 2

Traditional Scenario

portl: 172.31.1.1/ 24
port2: 10.00.1/24
port3: 30.00.1/24

portl: 172.31.2.2 / 24
port2: 10002 /24
port3: 40002 /24

hi portd: 50.00.1/24 h2
1m2.1.1.0/24 1 2 1000/2a 2| {'ﬁ 1 172.31.2.0 /24
B I
ethO: 3 ethl:
172.31.1.100 /24 172.312.100 / 24
30.0.0.0 / 24 50.0.0.0 / 24 40.0.0.0 / 24
2 hd
1723130124] 20.0.00 /24 3 1 172.31.4.0 / 24
I
eth0: ethl:

port1:1723133 /24
port2: 20.0.03 /24

port1: 1723144 /24

17231.3.100 / 24 port2: 40.0.0 4 / 24

Routefl|ow

172.31.4.100 /24

T u to r i al 2 RouteFlow Scenario

rfvmA: ;-
eth0 - 192.169.1.101/24 e
eth1-172.31.1.1/24
B B | rvmA dp0 eth2 - 10.0.0.1/24
: [_etm_| |_vmA1 | eth3 - 30.0.0.1/24
Chmao— R == eth4 - 50.0.0.1/24
: et rvmas]
et | [rumad | fvmB:
eth0 - 192.169.1.102/24
.......... RF rfvmB eth1-172.31.2.1124
stave i o eth2 - 10.0.0.2124
[rfwmt o ethd - = eth3 - 40.0.0.2/124
e L fvmC:
eth0 - 192.169.1.103/24
------ | rivmC eth1 - 172.31.3.1124
et meA_] eth2 - 20.0.0.3124
[(rmca] ety [ae | ez | eth3 - 30.0.0.3124
eth3 fvmC.3
fvmD:
e rfumD eth0 - 192.169.1.104/24
e eth1-172.31.4.1124
T e == D1 | eth2 - 40.0.0.4124
. eth? fvmb.2
: — = eth3 - 20.0.0.4/24
L2E : ethd - 50.0.0.4/24
ethd rfurmnD.4
host1:
eth0 - 172.31.1.100/24
- w-172.31.1.1
pyswitch : ¢
: RF-server }------- RF-controller : host2;
NOX B : eth0 - 172.31.2.100/24
: gw-172.31.2.1
NOX
host3:
- eth0 - 172.31.3.100/24
e ! gw-172.31.3.1
! Physical link : & o .
A hostd4:
EERRE TCP connedtion | . - . . eth0 - 172.31.4.100/24
e] : gw-172.31.4.1
Data Plane: E.g., Mininet
; Joooos2e .
hOSt 1 17231.1.0/ 24 IIMItCh AIZ N S ZIMItCh B'I 1723120/ 24 hOSt 2
[M72.31.1.100] Gl 1 g El [72.31.2100]
50.0.0.0 /24
30.0.0.0/24 40.0.0.0 /24
BI (1P|
RO ute F | oW host 3 Tswitch CEZ] il Tswitch D[] host 4
o 172.31.3.0 /24 172.31.4.0 1 24
[M72.31.3.100] [72.31.4400]

\ (P

Conclusions \

" RouteFlow proposes a commodity routing architecture that combines
the line-rate performance of commercial hardware with the flexibility

of open-source routing stacks (remotely) running on PCs;

" Allows for a flexible resource association between IP routing
protocols and a programmable physical substrate:

" Multiple use cases around virtualized IP routing services.

" |P routing protocol optimization

" Migration path from traditional IP deployments to software-defined networks

(

(P

Questions? \

[]
i . '."A -+ I. | . i .
' N te . .- . i l‘ .
.) e 8

Thank you!

routeflow-discuss@googlegroups.com

A TEN A
. %\CRQAU&%E.o"

AR .

Learn more!
https://go.cpgd.com.br/routeflow

“ Get the Code!

1} https://github.com/CPgD/RouteFlow

Routel-low

Christian Esteve Rothenberg

esteve@cpqd.com.br
+55 19 3705-4479

#,

905809 .-“.._.
gttty
st

,

%

o

\-..ﬂ“ss%\w\@\;

7

=
O
L
O
P’
-
@)
(a4

BACKUP

Routeflow

Proposed experiments N\

Mainly two types of experiments:

ooooooo

1. One RouteFlow platform running
In each OpenFlow island
controlling only the OpenFlow
switches in the same facility.

lllllllllllllllllllll

2. Only one RouteFlow platform PR =
running in a single facility at a =
time and controlling OpenFlow S
switches from every facility.

The resulting combination of scenarios will allow to validate the

scalability and performance limits of the remote operation of the

IP routing stacks provided by RouteFlow.

(

Interop Experiments & Realistic_ | '\ (R”
Router Virtualization \ ¥

=
b
%

Research VLAN 2

Research VLAN 1

Production VLANs OpenFlow- RFE-Server

Controller

\ (P

Expected results \

* Technical viability: Exploring the scalability and performance limits

* convergence times not penalized by remote routing protocol stacks.
* suitable distribution of control plane entities and the physical counterparts.

* real-world networking conditions (e.g., latencies, failures, traffic)
* Interoperability and generality of RouteFlow

* different open-source routing protocol stacks (XORP and Quagga),
* different virtualization technologies (e.g., LXC and QEMU)
* different OpenFlow controllers (e.g., NOX and Beacon),

* all inter-working with commercial OpenFlow-enabled switches and legacy
networking equipment.

e Assessment of the OFELIA testbed facilities

(» rE.0.+ Capabilities of the Expedient CMF, effective resource sharing,
controller application deployment, etc.

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61

