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About CPgD

\RP

Major telecom R&D center in LATAM with expertise in various areas:
- Optical (WDM, PON), Wireless (WiMax, LTE), IP (IMS/NGN, OpenFlow), OSS/BSS, Digital TV...
— Today with ~1200 highly-skilled employees

Created in 1976 as R&D branch of Telebras - Brazilian telecom monopoly

Private foundation since 1998 after Telebras was privatized

Purpose to foster innovation to help (mainly) Brazilian companies and society
- Focus on technology R&D
— Bridge the gap between universities and
the industry

* Near highly-ranked universities in Brazil
— History of collaborations

Routefl|ow




About the GIGA Project Testbed
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Focus on technology R&D and the industry



RouteFlow Project Timeline \
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... building a community
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http://go.cpqd.com.br/routeflow/
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Motivation v1 \

Original motivation around RouteFlow (formerly QuagFlow)
(Seeded in experience building a Broadcom-based L2/L3 switch prototype)

* Current “mainframe” model of networking equipment:
* Costly systems based on proprietary HW and closed SW,
* Lack of programmability limits cutomization and in-house innovation;
* Ossified architectures.

* Goal: Open commodity routing solutions:
+ open-source routing protocol stacks (e.g. Quagga)
+ commercial networking HW with open API (i.e. OpenFlow)
= line-rate performace, cost-efficiency, and flexibility!

(



Current router architectures
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Management

ﬁ Telnet, SSH, Web, SNMP ﬁ

Control Logic

Hardware
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OpenFlow model
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Control Logic
Management Controller
O.S.
Standard API (i.e. OpenFlow) @
St Switch

Hardware
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Motivation v2 \

* A transition path, incrementally deployable:
from current IP networks to SDN

* Hybrid modes of operations: traditional IP control planes along SDN

* Innovation around IP control planes
* Simplified network mgm, protocol optimization, shadow networks

* Advancing IP Network Virtualization
* From flexible Virtual Routers to IP Network-as-a-Service

A

aPD



Use Cases

Logical Split Router Router Multiplexation Router Aggregation
(1:1) (1:n) (m:1 or m:n)

Virtual Network Provider

(Network Slices) S/‘%/
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Infrastructure Provider
(Physical Substrate)
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Architecture
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RF-Controller application
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* Mainly acts like a proxy for the OpenFlow API || ¥ THIEH | tave |  Taie i

n<O
|

: ¥
* Interacts with the OpenFlow datapaths RouteFiow | | —
. ave ngine Virtual
* Filters relevant events to the RF-Server = == = Swmss [ Environment.
* Receives flow mod commands - OpenFlow | RouteFlow Protocol
. . D D ; L'
* Delivers traffic to/from VM interfaces via OVS - [ RouteFow server
: * RouteFlow Protocol

—— TE————S———"——
| i [ RouteFlow |[ AP. AP. i
i ¥ Controller 1 || n Controller |
| Network Controller :
i OpenFlow
iF { L software -i
i | . sofware |
: ! ‘I' soﬂs\.:aﬂ::re — i
i API | Driver | L[ Prﬂsiilw"%':;'t':;gblei
i PORT 1 e | i
i PORT 2 || HW Table e | i
: OB LT harcware = i




RouteFlow Server

* The “brain” of RouteFlow;
* Manages available virtual machines (VM);
* Configures the virtual environment
* Receives events from the RF- controller

— Switch join/leave, packet-in;
* Associates VMs and OpenFlow switches;
* Determines packet delivery from/to VMs

* Requests flow installation / modification in
OpenFlow switches.
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RF-Server: Association of VMs and DPs
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RF-Server: Flow of Routing Control Packets
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RouteFlow-Slave

Runs as a daemon in Linux-based VM
Registers the VM with the RF-Server
Configures the VM (e.g., interfaces)

Listens to ARP and IP table updates via
Linux Netlink events

- Linux Routing stack independent
(Quagga, XORP)

Translates routing updates into flow rules;
—  Match: DST_MAC + DST_IP + MASK
— Actions: Re-write MACs + port-out
Translates ARP entries into flow rules
—  Match: DST_MAC + DST_IP
- Actions: Re-write MACs + port-out

Sends flow update commands to RF-
Server

Runrs VM-OVS attachment discovery
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RF-Slave: VM configuration

VM
ARP ROUTE

Table Table

Route
Engine

—
—

RouteFlow |—
Slave e s —
e

= Cofigure the amount of interfaces (enable/disable);

= Start/Stop Routing Engine;
" Clean interface configuration and ARP/ROUTE tables

@




RF Add/Remove Routes \‘CE”
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IP Forwarding Rules in OpenFlow \

RF-Slave info from the Linux network stack

* Route =IP + MASK [Rede]+IP[Gateway]+Interface

*  ARP= IP[Host]+MAC[Host]+Interface

OpenFlow 1.0 entry:

e Match: DST _MAC + DST _IP + SUBNET MASK

* Actions:
- Re-Write [SRC_MAC (Interface)], Re-Write [DST_MAC (Nexthop)]
— Forward [Port-out(Interface)]

Longest Prefix Match (LPM)

 Add priority to flow entry based on the length of the subnet mask

In OpenFlow 1.1:

* Addictional actions: TTL decrement, checksum update

*  Multiple-Table: Table[0] Matches DST_MAC, Table[1] Matches DST_IP

(



Virtual Environment

* V1 used TUN/TAP devices and payload
encapsulation in the RF-Protocol .

* V2 manages VM connectivity through an OpenFIowJE
capable soft-switch

* Routing engines (e.g. Quagga) exchange routing
protocol packets
* Two modes of operation for VM packet exchange:
* UP: Directly through the OVS (requires Topology Disc)
* DOWN: Through the physical switches

* Centralized but logically distributed
* Can be physically distributed

* Support of different virtualization technologies
* From QEMU to LXC

* VM-OVS Attachment Discovery Protocol
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RF-Slave: Interface Attachment discovery (1) \

= Discovery of VM interfaces
attachment to OVS.

VM DP port OVS

port

) ) Mapping Table
" Virtual interfaces are Sl

dinamically attached to the OVS - .
1 1
— No guarantee of order .
— VMs may have an arbitrary . | siave [\/M] 1
number of interfaces —
2 2 I'— (4l
= When VM registers to the RF- B : e VM 212 OAES
Server the OVS ports in use are ]
unknown. % —stave_\/M nﬂ_
n n ?
RF- Server RF - Controller
NOX
OF-DP [1] OF-DP [2] OF-DP [n]
O 2 E| | O3 & Q @ &




RF-Slave: Interface Attachment discovery (2) \ (RD

Frame: RF L1l [l
vM1 [2 [ 2]
Ethernet RF | Lo KE K
dst || sSrc " type || vmId " intf | RF 1 4 s
slave | vM2 [2 [ 5
+ in_port (ovs) Lo KE L 6
RF- Server RF - Controller VM DP  port SXE
NOX 1 1 1 1
. : 1 1 2 2
= Discover the VM interfaces (ETHX)
1 1 3 3
" RF-Slaves sends discovery frames to all ifaces except ETHO;
2 2 1 4
" OVS forwards the packet-in to RF-Controller along the OVS - 5
port-in information.
2 2 3 6

@' RF-Server sets the mapping of VM-DP-Port-OVS_port.




The RouteFlow protocol N
* Allowing a loosely couple architecture with two | = BT |
simple interfaces: [ | [ree] | LH |
l 1] < | Table aole | LT |
* Protocol between RF-Server and RF-Slave ST ,Jr == ;
. ; . ; | RouteFlow Route e | ]
* VM registration and configuration, = Slave Engne Nl Virtual
L —— = E U]
* Generate OpenFlow rules: ;OpenFlow | RouteFlow Protocol
Translate changes in IP and ARP tables into | RouteFiow Server
OF modification messages. ; * RouteFlow Protocol
—t ¥ |
* Protocol between RF-Server and RF-Controller | [FouteFrow] e e :
] v ontroller | n Controll |
- Basically, an API to controller OpenFlow stack | Network Cortroller e
Subset of OpenFlow commands and events R R —
Plus VM-OVS attachment discovery event - — — i
. | 1 software l
* In short, an IPC/RPC mechanism - [owe |"'ﬂ | H{Programmabie!
— Application-level on top of TCP, Client-Server, e [ ] Svere
Assynchronous, Without Confirmation o-u | Il 3 |

@ Evolving to Apache Thrift & REST+JSON |



RF-Protocol: Frame

RF Base Header

o\ - -
N -
N -

N -

N

RF VM Config Msg
RF Base

RF IP Flow Config Msg
RF Base

@ Routeflow



API between RF-Controller and RF-Server

¥

RouteFlow Server

-~

T RouteFlow Pri
________ .

RouteFlow
Controller

AP.
1

Al
) L

Metwork Controller

Routefl|ow

EVENT packet_in

EVENT datapath_leave
EVENT datapath_join

EVENT link_event

datapath id §8 bytes)
port_in (2 bytes)
kt 1d (8 bytes)
ype (4 bytes)

datapath_id (8 bytes)

datapath_id (8 bytes)
no_ports (4 bytes)
hw_desc (100 bytes)

reason (1 byte)
dpl (8 bytes)
port 1 (2 bytes)
dp2 (8 bytes)

\RP

EVENT map_event

port_2 (2 bytes)

Vmld (8 bytes)
VmPort (Z bytes)
OvsPort (2 bytes)

COMMAND flow

COMMAND send_packet

datapath |d8 bytes)
flow mod’ (2036 ytes)

datapath_id (8 bytes)
port out bytes)
pkt 1d (8 ytes)



VM Registration and Configuration

\\®P

RF-Slave RF-Server
$ 4
RFMessage (register)
—
Check VmId
~FMessage (acceP!)
S
REVMMsg (reseh)
S
_ M Datapath Join
RFVMMSQ (conﬂg)
M Datapath Leave
REVMMsg (reset
-t

Routellow




Flow Modification messages

\RP

RF-Slave RF-Server
¢ ¢
New Route R
g [ 28 (fow_intany
New Host o
e | REFIOWMsg (o, gt
~—
Route Removed
i A R RFFlowMsg ( flow_remove)
—

Host Expire "

ignored

Routefl|ow




Agenda

» Background: OpenFlow, Logical/Virtual Routers, Network Virtualization &
* Project Overview
* Motivation

* Architecture
— Controller
— Server
— Slave
— Protocol
* Evaluation
* Work ahead

e Demo and hands-on Tutorial
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NetFPGA-based testbed evaluation”'
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Prototype evaluation Ty

* Setup
e NOX controller

* Quagga routing engine
* 5x NetFPGAs
* Results

* |Interoperability with traditional networking gear

* Route convergence time is dominated by the protocol time-out
configuration (e.g., 4 x HELLO in OSPF) not by slow-path operations

* Larger latency only for those packets that need to go to the slow-path:

(

* Lack FIB entry, need processing by the OS networking / routing stack e.g., ARP, PING,
routing protocol messages.



Experimental results: Route Convergence

\RP
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Scaling the Virtual Environment
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Evaluation of the Virtualization Env”i'ronment
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The Path Ahead \\(RD

* OpenFlow 1.1
* Controller API: Rest-APlI JSON & Apache Thrift
* Advancing the IP Network Virtualization
—  Protocol Optimization, Modes of operation, Router Migration
* Scalability and Resiliency
e System Limits and Stress testing
* Live Trials
— Reality-Checks at Scale
* Embrace related work (past & ongoing)
— SoftRouter, VROOM, DROP, FIBIUM, ONIX, etc.
* Build a community!
— Student Projects corner (https://sites.google.com/site/routeflow/projects)
(e



Protocol Optimization \\CR’.,

0 Separation of concerns between topology maintenance and routing
state distribution

—  E.g. HELLOs sent “down” while LSA are kept “up”
—  E.g. BFD-like fault detection substitute HELLOs

’ Routel-low
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RouteFlow Server Controller

Quagga

& OSPF / RIP / BGP

Virtual Topology
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Resiliency and Scalability

\(RD

0 Distributed Virtual environment with distributed OVS for load balanéing,

replication, and advanced VM management (e.g., migration)
s NoSQL-like distributed database for core RouteFlow state
. Multi-controller environments
. Fault-tolerance: Master / Slave, Master / Master, ...7?

\f/—\{ I: T RouteFlow Server Controller
Quaggaz
& OSPF / RIP / BGP &
| .Vlrtual Topology j_ga/ =

Legacy Network

Programmable =
Switch i Ty Lecacy L2/L3 Switch

Programmable. =
Switch

Routefllow



System limits and Stress testing \

* Increase network size

* |ncrease flowmod/sec

Variable OpenFlow control packet handling / processing:
Impact on Routing Protocol?
Impact on topology maintainance protocol, e.g., LLDP-based?

* Scale limitation (Flow table size) of logical / large routing tables
* Smart shared multiple table lookup in OF.1.1
* Smart caching, hybrid software-hardware flow state
* Related Work (e.g., ViAggre)
* etc.

(



Advancing the Use Cases and Modes of Operation

* From logical routers to flexible virtual networks

Logical Split Router Router Multiplexation Router Aggregation
(1:1) (1:n) (m:1 or m:n)

Virtual Network Provider

(Network Slices) S/%/
s

Infrastructure Provider
(Physical Substrate)

S ——————— |




Aggregated Router \\\c“i,
* Scenarios: |

— a single BGP router aggregating a number of OpenFlow switches

— L3 services in data center distributed single virtual switch

* Distributed lookup?
- E.g., Smart FIB generation and distribution

* Intra-router switching strategy? Router Aggregation

(m:1 or m:n)

FIB

FIB’ FIB'

FIB' | | FIB'
Routefl|ow

FIB'




NaaS - Network-as-a-Service

Virtual control plane

Virtual Switch
1

Virtual Switch
2

Network controller
Routeflow



NaaS - Network-as-a-Service

\ By

Enabling Virtual networks as a Service

* Many open research questions and
ongoing work (e.g., Quantum @ OpenStack)

CloudRouteFlow as a Service?

Virtual control

plane
/

Virtual control plane
abstraction layer

000

Web management
interface

Network
controller

= .

Routing configuration
database i




CPgD Dynamic Converged (Packet and Ciréuits) Services

Goal: Common control plane for Layers 1 to 3 networks aiming at Naa$S, Raas, VNO: . |
Approach: OpenFlow + RouteFlow + SPIDER (virtualization comes in a subsequent phase)

DYNAMIC CONVERGED SERVICES

L L2/L3 packets) . (L1/L2 circu

NOX

OpenFlow
OpenFlow Protocol

Protocol E
WDM |
Switch S
—dCKC WDM WDM
Switch Switch
RoutefFlow




FIBRE: FI testbeds between BRazil and Europe \ P’

* Joint EU-Brazil project between 9 partners from Brazil (6 from GIGA), 5
from Europe (4 from Ofelia and OneLab) and 1 from Australia (from
OneLab)

- Design, implementation and validation of a shared Future Internet
sliceable/programmable research facility, supporting the joint
experimentation of European and Brazilian researchers.

* The objectives include:

. the development and operation of a new experimental facility in Brazil

. the development and operation of a Fl facility in Europe based on
enhancements and the federation of the existing OFELIA and OnelLab
infrastructures

. The federation of the Brazilian and European experimental facilities, to
support the provisioning of slices using resources from both testbeds

* Officially started on Oct 1 2011
* Duration: 36 months
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OFELIA-enabled Experiments

\\®P

* One RouteFlow platform running in each OpenFlow island
controlling only the OpenFlow switches in the same facility.

ooof

* Experiment outputs: Platform behaviour in geo-distributed
setup, route convergence times, interoperability tests
Routerlow




OFELIA-enabled Experiments

' \(Ei)

Only one RouteFlow platform running in a single facility at a
time and controlling OpenFlow switches from every facility.

* Experiment outputs: Protocol behaviour under remote

operation, route convergence times, slow-path performance
Routerlow




Reality check at Euro-scale

Experimental work
Scale

Equipment

Realism

Performance Fidelity

Current
510 10 x 4-port NetFPGAs

Software-based switches,
NetFPGAS

Few, small toPoIogies
Synthetic traffic (control +
user) and failures

Low latency LAN

Ofelia-enabled
10s of OpenFlow switches

Multi-vendor commercial
OpenFlow switches

Geo-distributed topologies
Real traffic (control &
data) ? .

and failure scenarios

Variable network conditions

@ OFELIA
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Tutorial 2

Traditional Scenario

portl: 172.31.1.1/ 24
port2: 10.00.1/24
port3: 30.00.1/24

portl: 172.31.2.2 / 24
port2: 10002 /24
port3: 40002 /24

hi portd: 50.00.1/24 h2
1m2.1.1.0/24 1 2  1000/2a 2| {'ﬁ 1 172.31.2.0 /24
B I
ethO: 3 ethl:
172.31.1.100 /24 172.312.100 / 24
30.0.0.0 / 24 50.0.0.0 / 24 40.0.0.0 / 24
2 hd
1723130124 ] 20.0.00 /24 3 1 172.31.4.0 / 24
I
eth0: ethl:

port1:1723133 /24
port2: 20.0.03 /24

port1: 1723144 /24

17231.3.100 / 24 port2: 40.0.0 4 / 24

Routefl|ow

172.31.4.100 /24



T u to r i al 2 RouteFlow Scenario

rfvmA: ;-
eth0 - 192.169.1.101/24 e
eth1-172.31.1.1/24
B B | rvmA dp0 eth2 - 10.0.0.1/24
: [_etm_| |_vmA1 | eth3 - 30.0.0.1/24
Chmao— R == eth4 - 50.0.0.1/24
: et rvmas ]
et | [ rumad | fvmB:
eth0 - 192.169.1.102/24
.......... RF rfvmB eth1-172.31.2.1124
stave i o eth2 - 10.0.0.2124
[rfwmt o ethd - = eth3 - 40.0.0.2/124
e L fvmC:
eth0 - 192.169.1.103/24
------ | rivmC eth1 - 172.31.3.1124
et meA_] eth2 - 20.0.0.3124
[(rmca] ety [ae | ez | eth3 - 30.0.0.3124
eth3 fvmC.3
fvmD:
e rfumD eth0 - 192.169.1.104/24
e eth1-172.31.4.1124
T e == D1 | eth2 - 40.0.0.4124
. eth? fvmb.2
: — = eth3 - 20.0.0.4/24
L2E : ethd - 50.0.0.4/24
ethd rfurmnD.4
host1:
eth0 - 172.31.1.100/24
- w-172.31.1.1
pyswitch : ¢
: RF-server }------- RF-controller : host2;
NOX B : eth0 - 172.31.2.100/24
: gw-172.31.2.1
NOX
host3:
- eth0 - 172.31.3.100/24
e ! gw-172.31.3.1
! Physical link : & o .
A hostd4:
EERRE TCP connedtion | . - . . eth0 - 172.31.4.100/24
e ] : gw-172.31.4.1
Data Plane: E.g., Mininet
; Joooos2e .
hOSt 1 17231.1.0/ 24 IIMItCh AIZ N S ZIMItCh B'I 1723120/ 24 hOSt 2
[M72.31.1.100] Gl 1 g El [72.31.2100]
50.0.0.0 /24
30.0.0.0/24 40.0.0.0 /24
BI (1P|
RO ute F | oW host 3 Tswitch CEZ] il Tswitch D[] host 4
o 172.31.3.0 /24 172.31.4.0 1 24
[M72.31.3.100] [72.31.4400]
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Conclusions \

" RouteFlow proposes a commodity routing architecture that combines
the line-rate performance of commercial hardware with the flexibility

of open-source routing stacks (remotely) running on PCs;

" Allows for a flexible resource association between IP routing
protocols and a programmable physical substrate:

" Multiple use cases around virtualized IP routing services.

" |P routing protocol optimization

" Migration path from traditional IP deployments to software-defined networks

(
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Questions? \

[ ]
i . '."A -+ I. | . i .
' N te . .- . i l‘ .
. ) e 8

Thank you!

routeflow-discuss@googlegroups.com

A TEN A
. %\CRQAU&%E.o"

AR .

Learn more!
https://go.cpgd.com.br/routeflow

“ Get the Code!

1} https://github.com/CPgD/RouteFlow
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Proposed experiments N\

Mainly two types of experiments:

ooooooo

1. One RouteFlow platform running
In each OpenFlow island
controlling only the OpenFlow
switches in the same facility.

lllllllllllllllllllll

2. Only one RouteFlow platform PR =
running in a single facility at a =
time and controlling OpenFlow S
switches from every facility.

The resulting combination of scenarios will allow to validate the

scalability and performance limits of the remote operation of the

IP routing stacks provided by RouteFlow.

(



Interop Experiments & Realistic_ | '\ (R”
Router Virtualization \ ¥

=
b
%

Research VLAN 2

Research VLAN 1

Production VLANs OpenFlow- RFE-Server

Controller
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Expected results \

* Technical viability: Exploring the scalability and performance limits

* convergence times not penalized by remote routing protocol stacks.
* suitable distribution of control plane entities and the physical counterparts.

* real-world networking conditions (e.g., latencies, failures, traffic)
* Interoperability and generality of RouteFlow

* different open-source routing protocol stacks (XORP and Quagga),
* different virtualization technologies (e.g., LXC and QEMU)
* different OpenFlow controllers (e.g., NOX and Beacon),

* all inter-working with commercial OpenFlow-enabled switches and legacy
networking equipment.

e Assessment of the OFELIA testbed facilities

( » rE.0.+ Capabilities of the Expedient CMF, effective resource sharing,
controller application deployment, etc.
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