

Network Virtualization

Prof. Laurent Mathy Lancaster University, UK

Overview

- Definitions
- Network virtualization technologies
 - VLANs
 - VPNs
 - Route filtering
 - Tunneling
 - Logical routers
 - Virtual routers
 - Programmable virtual routers

overview

- Virtual networks
 - Motivations
 - Principles
 - Architecture
 - Migration
- Server virtualization
 - Full-virtualization
 - Paravirtualization
 - Container-based virtualization
- Building vrouters

- Network [New Oxford American Dictionary]
 - a group or system of interconnected people or things
 - a number of interconnected computers, machines, or operations
- I prefer
 - A group of interconnected entities that communicate through some predefined method

 So a network is, in our case, a set of (interconnected) devices that can communicate with each other by using some protocols

- Virtualization [New Oxford American Dictionary]
 - The act of virtualizing
- Virtualize
 - convert (something) to a computer-generated simulation of reality
- Virtual [New Oxford American Dictionary]

 – (Computing) not physically existing as such but made by software to appear to do so

- These are very general definitions
 - A PDF file can be said to be a virtual document
 - My Mii is a virtual Me
 - Mr Potato Head is a virtual character (in the movie "Toy Story")
 - Mr Potato Head is not a virtual character (in toy shop)
 - A program addressing space is virtual
 - A harddrive partition is virtual
 - TCP connection to Google is virtual

- We are kind of in trouble, let's try something else
- Virtual [New Hacker's Dictionary]
 - [via the technical term `virtual memory', prob. from the term `virtual image' in optics] 1. Common alternative to logical; often used to refer to the artificial objects (like addressable virtual memory larger than physical memory) simulated by a computer system as a convenient way to manage access to shared resources. 2. Simulated; performing the functions of something that isn't really there. An imaginative child's doll may be a virtual playmate. Oppose real.

- Definition 1 helps
 - A virtual object is simulated and shares resources (with other virtual objects, presumably)
 - Virtual networks will share a common infrastructure
 - Virtual resource constructed as logical partitioning of underlying common shared resource
 - As opposed to separate dedicated physical resource

- Notice how the shared resource could be virtual
 - virtual resources can be further virtualized
 - "recursion" is possible
- The Internet already has many virtual links
 - Many L2 links in internet are build as leased links across shared common transmission bearer service (often telephone company)
 - These L2 links are virtual, but from L3 perspective the Internet is a separate network
 - Layering changes the perspective!

- The sharing is done for cost reasons, mainly
- From the client perspective, the virtual resource should have some form of isolation from other virtual resources
 - It is that "level" of isolation that is central to the different approaches to virtualization
 - What is being isolated and to what extend

Network virtualization Technologies

- We present a (brief) overview of (some) network virtualization technologies
 - While all of these fall under the umbrella term "network virtualization", the goal is to fix ideas as to
 - What is virtualized
 - The type of isolation provided

Overview

- Definitions
- Network virtualization technologies
 - 🔈 VLANs
 - VPNs
 - Route filtering
 - Tunneling
 - Logical routers
 - Virtual routers
 - Programmable virtual routers

- Layer 2 virtualization technology
- Virtualizes physical LANs
 - Creates groups of hosts that communicate as if on same broadcast domain, regardless of physical location
 - A VLAN behaves as a physical LAN

- Virtualization realized by frame colouring
 - 4-byte tag added to Ethernet frame
 - Colouring usually done on a port-by-port basis
- Isolation of "broadcast domain"
 - Traffic isolation at layer 2
 - E.g. blue LAN isolated from red LAN

- Why?
 - Decoupling of physical/geographical position and LAN assignment
 - Improved security by traffic segregation
 - Interconnection through routers (L3)
 - Better bandwidth utilization
 - Flexibility at low cost

Overview

- Definitions
- Network virtualization technologies
 - VLANs
 - 🖕 VPNs
 - Route filtering
 - Tunneling
 - Logical routers
 - Virtual routers
 - Programmable virtual routers

VPN

• Virtual Private Network

- Private [New Oxford American Dictionary]
 - belonging to or for the use of one particular person or group of people [or things] only
- Devices not participating in the private network are not aware of it and cannot access the private content
 - A VLAN is a layer 2 virtual private network
 - There are very many different types of VPNs and VPN technology
 - At all layers of communication

VPN

- VPN is an umbrella term
 - Encompasses so many different techniques, technologies and terms that you can easily get very confused
 - All with various merit
 - Your definitions are as good anybody else's!
- All VPNs provide traffic isolation
- With appropriate mechanisms, also bandwidth isolation
 - Scheduling
 - QoS mechanisms

Overview

- Definitions
- Network virtualization technologies
 - VLANs
 - VPNs
 - Route filtering
 - Tunneling
 - Logical routers
 - Virtual routers
 - Programmable virtual routers

VPN – route filtering

- Route filtering
 - Controls route propagation so that
 - Networks within a VPN receive route advertisements for other networks in the same VPN
 - Networks not in same VPN do not receive those advertisement

VPN – route filtering

Overview

- Definitions
- Network virtualization technologies
 - VLANs
 - VPNs
 - Route filtering
 - 🔷 Tunneling
 - Logical routers
 - Virtual routers
 - Programmable virtual routers

VPN - tunneling

- A tunnel is a method of sending data by encapsulating the data and its protocol information within a different transmission unit
 - Virtual link
 - A very common way to build VPNs
 - Tunnels can be constructed at various layers

VPN - Tunneling

- Layer 2
 - Point-to-point = "pseudo-wire", "virtual private wire"
 - Logical link created across switching cloud
 - MPLS, L2TP, PPTP, PPP, etc
 - Point-to-multipoint = "virtual private LAN"
 - Interconnection of remote LAN segments across switching cloud
 - VLAN is particular case where LAN segments and switching cloud both Ethernet
 - MPLS, etc

VPN - tunneling

- Layer 3
 - IP-in-IP
 - Generic Routing Encapsulation (GRE)
 - Lightweight "any protocol over any protocol"

- Very often implements ethernet-over-IP
- IPSEC
- etc

VPN - tunneling

• Customer model (CE-based)

VPN - Tunneling

- Provider model (PE-based)
 - Provider-provisioned VPN (PPVPN)

VPN - tunneling

- Isolation
 - Traffic
 - Bandwidth
 - Addressing and routing
 - Each VPN can use own addressing space and routing
 - Oppose to Route filtering was single addressing/routing
 - In PPVPN, each VPN requires own routing/forwarding
 - » Own instance of routing protocol
 - » Own instance of forwarding table
 - » Own instance of filtering/classification
 - => Logical router

Overview

- Definitions
- Network virtualization technologies
 - VLANs
 - VPNs
 - Route filtering
 - Tunneling
 - Logical routers
 - Virtual routers
 - Programmable virtual routers

VPN – logical routers

• Also known as "virtual routers"

- But I "reserve" that term

VPN – logical routers

- Scaling limited by amount of high-speed memory used for caching forwarding and filtering data structures
 - Such memory accounts for large portion of cost
- Results in limited number of logical routers
- Research question
 - How to split memory between logical routers?
 - Better memory usage efficiency
 - Combine/overlap data structures into single one

Logical routers - VRRP

- Virtual Router Redundancy Protocol
 - It is really about logical routers

Overview

- Definitions
- Network virtualization technologies
 - VLANs
 - VPNs
 - Route filtering
 - Tunneling
 - Logical routers
 - 🖕 Virtual routers
 - Programmable virtual routers

Virtual Routers

- Logical routers provide traffic, bandwidth, addressing and routing isolation through replicated data structures
- But the router is still under the authority of a single administrator
- If we want our very own logical router, and manage it ourselves, we need something else

Virtual routers

- A virtual router is sliced so to provide isolation of administration/management
 - In addition to isolation of traffic, bandwidth, addressing and routing

Overview

- Definitions
- Network virtualization technologies
 - VLANs
 - VPNs
 - Route filtering
 - Tunneling
 - Logical routers
 - Virtual routers
- Programmable virtual routers

Virtual Programmable Routers

- So far, all routers ran the same stack
 - (Logical and) virtual routers have separate data structures
- The next "step" is to run different stacks
- \Rightarrow Virtual Programmable Routers
 - Also commonly known as "virtual routers"
 - How confusing!
 - This shouldn't be surprising, as historically, computer scientists have had serious issues with language and imagination for new terms

Virtual Programmable Routers

- Run potentially completely different environments (control – data planes)
 - Different protocols, implementations, etc

overview

- Virtual networks
 - Motivations
 - Principles
 - Architecture
 - Migration
- Server virtualization
 - Full-virtualization
 - Paravirtualization
 - Container-based virtualization
- Building vrouters

Virtual networks - motivations

- Traditionally, ISPs have provided both
 - (Physical) Communication infrastructure
 - Communication services (network protocol deployment and service provisioning)
 - To have a presence, ISP must deploy material at geographical location

Virtual networks - motivations

- This state of affairs leads to resistance to new service deployment
 - To achieve large-scale deployment, an ISP must
 - Either deploy infrastructure world-wide (expensive)
 - And hope to gain customers
 - Or rely on cooperation from other ISPs (to do the same), to provide service end-to-end
 - Add to this that communication service is a critical revenue stream
 - => "Ossification" of the network

overview

- Virtual networks
 - Motivations
 - Principles
 - Architecture
 - Migration
- Server virtualization
 - Full-virtualization
 - Paravirtualization
 - Container-based virtualization
- Building vrouters

Virtual networks - principles

- Overall principle: decoupling of infrastructure substrate and communication services
 - Several networks deployed as virtual networks over a common physical infrastructure
 - Central to all proposals
 - Cabo, GENI, Cabernet, 4WARD
- virtual networks = VPN + virtual routers

Virtual networks - principles

Infrastructure provider A

Substrate Infrastructure provider B Infrastructure provider C

overview

- Virtual networks
 - Motivations
 - Principles
 - 🔶 Architecture
 - Migration
- Server virtualization
 - Full-virtualization
 - Paravirtualization
 - Container-based virtualization
- Building vrouters

- We describe 4WARD
 - The most "fine grained"
 - The others are similar
 - "merged" layers

- Physical Infrastructure Provider (PIP)
 - Own and manage (some) physical infrastructure
 - Routers, switches, links, etc.
 - Wholesale of raw bit pipes
 - Wholesale of processing "cycles"
 - Main goal
 - Optimize mapping of requests for part of virtual network onto physical resources

- Virtual Network Provider (VNP)
 - Assembles resources from one or more
 PIPs into a virtual topology
 - A resource broker

LANCASTER

- Virtual Network Operator (VNO)
 - Installs and manages VNET over virtual topology
 - Virtual topologies is either "empty" slices or unconfigured routers
 - Installs (if necessary) and configures "router images"
 - Realizes a tailored network service
 - Could use several VNPs and "stitch" several virtual topologies together
 - Requires notion of "half-link" in virtual topologies
 - This is an outsource outpost

• Service provider

- Uses the virtual network to provide services
 - Virtual ISP
 - Value-added, custom service
 - Application provider

- The 4 layers are in the control plane only
 - The "only extra overhead" in the data plane is the virtualization technology overhead
- Users can connect as virtual machines through VPN access techniques
 - If a end-host connects to several Vnets without the isolation of virtual machines, then end-host can become an inter-vnet interconnection point.

Virtual networks – config language

- Request and configuration language is needed and still is an open research question
 - You need topology description with potentially "qualified" constraints
 - Location (router in Strasbourg)
 - Protocol spec (running IPv6)
 - Environment description
 - General system (CISCO, linux, etc)
 - Or very specific (IOS version x, linux kernel 2.x with Y patch z.z, etc)

overview

- Virtual networks
 - Motivations
 - Principles
 - Architecture
 - Migration
- Server virtualization
 - Full-virtualization
 - Paravirtualization
 - Container-based virtualization
- Building vrouters

Virtual networks – migration

- A natural consequence of the decoupling of the communication service and the physical platform
- Need to migrate 2 things
 - Virtual links
 - The virtual router per se

Virtual networks – vlink migration

• Link switched through transport network (e.g. optical network)

Virtual networks – vlink migration

 Packet-aware transport network (e.g. pseudowire)

- At best, must migrate configs and state from both control and data plane
- At worst, must migrate binaries, configs and state.
- Either way, their will be some delay and some disruption
 - Critical for data plane (a lot of packets will be lost)
 - Issue for control protocols
 - routing protocols would retransmit, etc.
 - too many/too long and will reconverge

- VROOM solution
 - Principle implemented by data-plane hypervisor
 - Separation of control and data-planes
 - Dynamic interface binding
- 5-step process to minimize disruption

• Step 1: Tunnel set-up

- Step 2: control plane migration
 - 1. Router-image copy (code + configs)
 - 2. Memory copy
 - 1. Pre-copy
 - 2. Stall-and-copy of modified (control plane downtime)
 - 3. On completion, redirect routing messages (both sides)

- Step 3: data-plane cloning
 - Moving data-plane state is wasteful
 - All we need is already in the control plane
 - Re-generate
 - This is not instantaneous
 - Installing a FIB entry can typically take a few hundred microseconds
 - Installing full BGP RIB (~250K entries) cat take about 20 seconds
- Control plane acts as remote control plane for original data plane

- Step 4: link migration
 - Once new data plane has been cloned, we have 2 functioning data planes
 - Start migrating links to new data-plane asynchronously

- Step 5: remove old data-plane and redirection tunnels
 - Once all links have been migrated, we are done

overview

- Virtual networks
 - Motivations
 - Principles
 - Architecture
 - Migration
- Server virtualization
 - Full-virtualization
 - Paravirtualization
 - Container-based virtualization
 - Building vrouters

- Isolation of administration and performance
- System virtualization
 - 2 main techniques
 - Full virtualization
 - Paravirtualization
 - Hardware assists
- OS virtualization
 - Container-based virtualization

- Full virtualization
 - Complete simulation of underlying hardware in software
 - Must intercept and simulate privileged operations
 - Effects of any instruction must be kept to that specific machine

- If it does, executed in HW; if not, trapped into software

– Example: VMWare workstation, fusion

- Paravirtualization
 - Simulation of underlying hardware
 - Software interface presented to virtual machines is slightly different from hardware interface
 - Goal is to change syscalls that are much more difficult to run than in native mode
 - Better performance as run closer to hardware
 - Guest operating system must be modified
 - Example: Xen, VMWare server, etc.

• Container-based OS virtualization

Kernel data structures (process tables, file descriptors, connection blocks, etc)

• Container-based OS virtualization

- Very lightweight
 - But less flexibility (kernel is fixed)

Server virtualization

- Virtual machines usually use virtual (software) network interfaces
 - With own MAC address
- Use of soft-switch to interconnect virtual and physical interfaces
 - This is usually very slow

overview

- Virtual networks
 - Motivations
 - Principles
 - Architecture
 - Migration
- Server virtualization
 - Full-virtualization
 - Paravirtualization
 - Container-based virtualization
- Building vrouters

- Trellis uses container-based virtualization to build virtual routers on PCs
 - This is mostly non-programmable IP vrouters
 - Could program in kernel
 - Uses modified soft-switch to improve performance
 - Essentially introduction of direct link between virtual and physical interfaces

Programmable vrouter using off-the-shelf server virtualization

• (programmable) Vrouter project

• (programmable) Vrouter project

- (programmable) Vrouter project
 - Forwarding path built using Click in kernel mode
 - Modular router system
 - Fully programmable above Ethernet
 - Using forwarding path merging techniques
 - Optimized for multi-core systems
 - Memory latency is bottleneck
 - Plenty of surplus CPU cycles in many cores
 - High performance (~ 10 small Mpps)

- All software based virtual routers benefit from NIC hardware assist to implement fairness
 - Virtual Machines Device Queues
 - Hardware queues associated with (virtual) MAC addresses
 - Traffic classification/isolation on NIC

- Programmable NP-based vrouters
 - Supercharging PlanetLab
 - Split data-path between NP and servers
 - -NPR
 - NP hosts a pipeline, made up of "classic" modules and plug-ins
 - Plug-in are programmable in C

Closing remarks

- Virtualization is ubiquitous in networking

 Reduces costs, increases flexibility
- Offered some "taxonomy" of network virtualization based on isolation
- Virtual networks of programmable virtual routers are an enabler for the future Internet
 - Concurrent deployment of existing and new protocols
 - Shadow networks for testing/debugging
 - Many more applications
 - A very hot research topic

