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ABSTRACT
Network architectures with decoupled control planes,
called software-defined networks (SDNs), are now tran-
sitioning from research prototypes to real deployments.
While we understand how to build SDNs, we don’t know
what defines a good one, how to optimize across the set
of all possible ones, or how to make tradeoffs within that
set. This extended abstract argues for a quantitative ap-
proach to evaluating SDNs and describes first results in
this direction.

1. INTRODUCTION
Historically, control plane functions in packet net-

works have been tightly coupled to the data plane. That
is, the boxes that decide where and how to forward pack-
ets have also performed the actual packet forwarding. A
more recent trend is to decouple the forwarding and con-
trol planes. While the details vary, the common change
in these software-defined networks (SDNs) is moving the
control-plane logic to a set of dedicated control-plane-
only boxes — controllers — that each manage one or
more simplified packet-forwarding boxes. This trend
is highlighted by a range of industry products and aca-
demic prototypes: BGP Route Reflectors [1], MPLS Path
Computation Elements with Label-Switched Routers [4],
enterprise wireless controllers with CAPWAP access
points [2], the planes of 4D [6, 10], and OpenFlow con-
trollers and switches [5, 7, 8, 9].

Proponents claim that SDNs simplify control-plane
design, improve convergence, lead to closer-to-optimal
path choices, and yeild a more flexible, evolvable net-
work. These benefits have led not just to production-
intent prototypes [8, 10], but real deployments and prod-
ucts from startups like Nicira and BigSwitch.

We now know why to build these networks, along with
possible ways to build them – but we lack a clear defini-
tion of a “good one". Hence, we don’t know the best
way to build them, we can’t quantitatively argue for or
against specific design choices, and we don’t know how
to make the right tradeoffs in a real world that dictates
engineering compromises.

Today, detractors raise concerns about decision la-
tency, scalability, and availability. If these concerns are
not addressed, SDNs might not get adopted. An opera-
tor must know that moving to an SDN does not require
sacrifices in the metrics they care about, including per-
formance, cost, and reliability. To ensure that years of
researcher effort are not wasted, we must quantitatively
compare newer decoupled control planes to traditional
fully distributed ones, to silence the fears of operators.

This research question is worth studying because we
don’t know the answer. We might find that these wor-
ries are justified, and that an SDN’s dependence on a
long-distance channel, along with a smaller set of possi-
ble control communication paths, results in overly slow
event-to-decision update times as well as reduced avail-
ability. We might instead find that the worries are unjus-
tified, and that correct decisions made immediately with
consistent state not only kill flaps but reduce delays. The
ideal outcome from this analysis would not just be com-
parison methodology, or even optimization methods, but
instead, guidelines for the techniques that will yield the
best control network, given a specific topology and spe-
cific goals.

2. WHY THIS IS HARD
A number of factors complicate the analysis:

Topologies vary: Networks differs in their number of
nodes, edges, distance between nodes, and connectiv-
ity. Simply obtaining a large set of reliable network
graphs is itself a research area.

Finding relevant metrics: What metrics are most
relevant to operators? For example, is guaranteeing
delay bounds more important than minimizing the av-
erage across the set of nodes?

Combining metrics: The right solution is likely to
be a combination of metrics. How can we specify a
combination of metrics, or a multiple constraints on a
“good enough” solution?

Computational complexity: Optimizing every
metric we’ve considered is an NP-Hard problem,
including latency, availability, fairness of state
distribution, and control channel congestion.
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Figure 1: Optimal placements for 1 and 5 con-
trollers in the Internet2 OS3E deployment.

Design space size: Spreading an application across
multiple nodes for scalability and fault tolerance
presents many options, including the number of con-
trollers, placement of controllers, number of state
replicas, method of distributing processing, and even
how many controllers each switch should connect to.

Fortunately, each of these may be addressable. Some
might be addressed by repeating an analysis on enough
topologies to uncover persistent trends. Others can be ad-
dressed by borrowing approximation algorithms from the
theory community. The rest could be addressed through
simplified models of distributed systems communication.

3. MOTIVATING EXAMPLE: I2
To begin to quantify the concerns, we have started to

look at two essential questions:

How many controllers are needed, and
where in the topology should they go?

This choice, controller placement1, influences every
aspect of a CBA, from state distribution options to fault
tolerance to performance metrics. While less significant
in the enterprise or data center, propagation latency sets
fundamental limits in the wide-area network. Specifi-
cally, it bounds the control reactions with a remote con-
troller that can be executed at reasonable speed and sta-
bility. For simplicity, we consider only partitioned con-
trollers, whose delays equal the node-to-controller lower
bounds, and ignore any delays added by controller-to-
controller coordination.

Consider Internet2, which is building a 34-node
nation-wide production network [3]. Figure 1 shows
placements where the number of controllers, k, equals 1
or 5; the higher density of nodes in the northeast relative
to the west leads to metric-specific optimal location com-
binations. For example, to minimize average latency for
k = 1, the controller should go in Chicago, which bal-
ances the high density of east coast cities with the lower
density of cities in the west. To minimize worst-case la-
tency for k = 1, the controller should go in Kansas City
instead, which is closest to the geographic center of the
1 We use “controllers” to refer to geographically distinct
controller locations, as opposed to individual servers.
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Figure 2: Latency CDFs for all possible con-
troller combinations for k = [1, 5]: average la-
tency (left), worst-case latency (right).

US. CDFs showing the full set of controller placements,
for each value of k, are shown in Figure 2. This example
demonstrates that even simple variations of a metric can
yield different placements, with their own tradeoffs.

4. INITIAL RESULTS
Our current focus is expanding the analysis to many

topologies, to find common patterns. Initial insights in-
clude: (1) Random placement is a poor strategy. The dif-
ference between a random placement and a carefully op-
timized one is often a factor of 2, and in some cases much
larger. (2) Surprisingly, one controller is often enough to
meet control response deadlines, such as restoring a link
in a SONET ring. (3) Most (75%) of the topologies show
tradeoffs between metrics; the graph shows a long tail,
with some metrics being off by more than a factor of 2.
Going forward, we plan to compare methods of state dis-
tribution across topologies, as well as look at metrics that
consider fault tolerance. Once we know how to measure
and optimize for SDNs, the original goal - a comparison
with traditional networks - becomes possible.
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