
Offloading Packet Forwarding in a Combined
Router/Server

Voravit Tanyingyong Markus Hidell Peter Sjödin
School of Information and Communication Technology

KTH Royal Institute of Technology
Kista, Sweden

{voravit, mahidell, psj}@kth.se

ABSTRACT
Despite the performance limitation with minimum-sized packet
processing, a modern PC-based router can provide as com-
petitive service as a specialized hardware router while offer-
ing more flexibility and possibility to extend beyond routing.
We focus on a use case in which the PC-based router also
functions as a server. In this paper, we propose an architec-
ture to boost overall performance of the PC-based router by
offloading packet processing tasks to the NIC. We introduce
a fast path for packet forwarding based on caching of flow
entries in on-board classification hardware on the NIC. We
describe our design and present an experimental evaluation.

Categories and Subject Descriptors
C.2.6 [Internetworking]: Routers

General Terms
Design, Experimentation, Performance

Keywords
PC-based router, Commodity Hardware Classifier, Flow-
based switching

1. INTRODUCTION
Advancement in PC technology allows a modern PC-based

router to offer as competitive service as a specialized hard-
ware router. Although a PC-based router might still not be
able to perform at wire-speed when it comes to minimum-
sized packet forwarding, recent research [1, 2] has shown that
the gap is closing in. This enables a PC-based router to of-
fer as competitive service as a specialized hardware router
while having more advantages in terms of price, accessibility,
and programmability. These attributes of a PC-based router
offers more flexibility and fosters new innovations. For in-
stance, it can be extended to offer more services beyond
solely routing. One example is data centers using BCube [5],
DCell [4] and FiConn [7] interconnection structure in which
a server act as an end host as well as a relay host for other
servers. Another example is community-level gateways in
residential networks in which a PC-based router responsible
for forwarding aggregated traffic to/from numerous building
blocks in a residential area also serves as a server providing
local services such as community web portal, mail, media
streaming, and directory services.
One way to improve overall performance of a PC-based

router is by offloading packet forwarding task to a hardware

component. Modern commodity hardware components are
very capable yet relatively cheap making them an attractive
choice for this purpose. By exploiting this fact, recent re-
search have proposed to bring forth better performance to a
PC-based router through the help of commodity hardware
components. Within these commodity hardware assisted ap-
proaches, there are a wide spectrum of methods ranging from
using purely software-based [6], modifying the actual hard-
ware [8], to consolidating hardware [3, 10]. In this paper,
we take the purely software-based approach to improve the
PC-based router forwarding performance. We aim at us-
ing unaltered commodity off-the-self hardware that can be
inserted into a PC-based router and only make changes in
software. This method is easy to adopt and requires no
change in the existing infrastructure.

The idea for this work comes as a spin-off from our pre-
vious work [11] that aims at improving lookup performance
of PC-based OpenFlow [9] with the use of NIC hardware
classification to offload the CPU from the lookup processing
task.

2. ARCHITECTURAL DESIGN
For a combined router/server, incoming packet is classi-

fied into two types: a pass-through packet to be forwarded
further and a local delivery packet to be handled by an ap-
plication running on the PC-based router. In Linux, the
pass-through packet is forwarded by the network stack in
the kernel space while the local delivery packet is passed on
to the user space and handled by a local application. Our
goal is to introduce a hardware classification to assist CPU
on processing the pass-through packets.

We propose an architecture based on caching of flows as
depicted in Figure 1. The applications in the user space
are the services running on the PC-based router. The for-
warding engine, or the routing engine, is a software process
on the PC-based router that makes forwarding decision for
pass-through packets. To offload the CPU from packet pro-
cessing task, we introduce a fast path in the lookup process
to bypass the forwarding engine in the software. This is done
by caching active flow table entries in the commodity NIC
with hardware classification support, which functions as a
lookup accelerator. In general, commodity NICs have no
capability to forward the packet by themselves. Thus, the
Quick Path Selector is introduced as a decision point to de-
termine which path a received packet should take. A packet
belonging to a cached flow in the lookup accelerator will find
a match in the Quick Path Selector and gets forward directly,
while a packet that does not belong to a cached flow will find

Figure 1: Architectural Design

no match and follows a standard path through normal soft-
ware lookup. A packet destined for a local application on
the system will be identified in the forwarding engine and
will be passed on to the application on the user space. The
architecture design in Figure 1 is intended to be generic to
allow flexibility and should support any types of hardware
classification NICs as well as any types of lookup process in
the forwarding engine. The actual implementation should
be able to adopt this design effortlessly.

3. EXPERIMENTAL EVALUATION
We setup a prototype of a PC-based router to evaluate

our architectural design. We use a NIC with the Intel 82599
10 Gigabit Ethernet controller to provide a lookup acceler-
ation function. We create a Quick Path Selector using a
simple index lookup table with receive interface and receive
queue as the lookup key to identify the outgoing interface
and outgoing queue. We use OpenFlow as our forwarding
engine to provide flexible forwarding. We use nbench1 as a
local application on the PC-based router.
Nbench is a Linux/Unix ported version of release 2 of

BYTE Magazine’s BYTEmark benchmark program. It runs
through ten different tasks, each produces a result in term of
the numbers of iteration per second. Nbench uses these num-
bers to calculate geometric mean to produce three overall
indexes: Integer index, Memory index, and Floating-point
index. These indexes are relative scores compared to a base-
line system based on an AMD K6/233 with 32 MB RAM and
512 KB L2-cache running Linux 2.0.32 and using GNU gcc
version 2.7.2.3 and libc-5.4.38. To provide a better represen-
tation for how much relative gain we acheive, we normalize
each nbench index into a ratio relative to when there is no
traffic load (and only nbench occupies the CPU) according
to (1) and use them as our performance metric.

Normalized index =
Nbench index to normalize

Nbench index at no traffic load
(1)

To investigate how much we gain from offloading the lookup
processing task with hardware classification, we carry out
an experiment to compare the application processing per-
formance of a standard PC-based router with a PC-based
router with our architecture. To keep the test simple, we
set up the DUT to use only one CPU core and two receive
queues. Both queues are mapped to the CPU core. The

1source from http://www.tux.org/ mayer/linux/bmark.html

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 100 200 300 400 500 600 700 800 900 1000N
or

m
al

iz
ed

 In
de

x
(R

el
at

iv
e

R
at

io
 to

 0
 K

pp
s)

Load (in Kpps)

Standard PC-based Router Setup
Setup with Hardware Acceleration

Figure 2: Normalized Integer Index

hardware classifier sorts pass-through packets to one queue
and local delivery packets to the other. The traffic generator
sends randomized 64-byte UDP packets at a constant rate
to the DUT on one port. All packets will match entries in
the lookup table on the DUT and are forwarded to another
port to the sink. We vary the traffic load in each round of
test from no load up to 1 Mpps and observe how traffic load
affects the normalized nbench indexes.

From the experiment, it turns out that the results are al-
most identical for all indexes. Thus, we present only the
normalized integer index in Figure 2. When compared with
the standard PC-based router setup, the setup with our ar-
chitecture achieves an increasing gain as the traffic load in-
creases as can be seen from the increasingly widen gap in
Figure 2. The largest gap is at the point when the standard
PC-based router is saturated (at 550 Kpps). The normalized
indexs are 0.01 for the standard PC-based router and 0.14
for our architecture. This translates to more than ten times
relative gain for our architecture. In addition, the maxi-
mum throughput of our architecture reaches up to about
800 Kpps, which is equivalent to 45% increase compared to
standard setup. This is expected since the lookup acceler-
ator should reduce the CPU cycles required to process the
packets making it possible to handle more packets in general.

4. REFERENCES
[1] R. Bolla and R. Bruschi. Pc-based software routers: high

performance and application service support. In PRESTO ’08.

[2] N. Egi et al. Towards high performance virtual routers on
commodity hardware. In CoNEXT ’08.

[3] K. Fall et al. Routebricks: enabling general purpose network
infrastructure. SIGOPS OSR, 45:112–125, February 2011.

[4] C. Guo et al. Dcell: a scalable and fault-tolerant network
structure for data centers. SIGCOMM CCR, 38:75–86, August
2008.

[5] C. Guo et al. Bcube: a high performance, server-centric
network architecture for modular data centers. SIGCOMM
CCR, 39:63–74, August 2009.

[6] S. Han et al. Packetshader: a gpu-accelerated software router.
SIGCOMM CCR, 40:195–206, August 2010.

[7] D. Li et al. Scalable and cost-effective interconnection of
data-center servers using dual server ports. IEEE/ACM Trans.
Netw., 19:102–114, February 2011.

[8] G. Lu et al. Serverswitch: a programmable and high
performance platform for data center networks. In NSDI’11.

[9] N. McKeown et al. Openflow: enabling innovation in campus
networks. SIGCOMM CCR, 38(2):69–74, 2008.

[10] N. Sarrar et al. Fibium: Towards hardware accelerated software
routers. Technical report, Deutsche Telekom Laboratories.

[11] V. Tanyingyong et al. Using hardware classification to improve
pc-based openflow switching. In HPSR, 2011.

