
Flow Processing Platform discovery

Octavian Rinciog
Computer Science Department

University Politehnica of Bucharest
octavian.rinciog@cs.pub.ro

Costin Raiciu
Computer Science Department

University Politehnica of Bucharest
costin.raiciu@cs.pub.ro

1. INTRODUCTION
Flow processing is a manipulation of packets inside the

network where the service given to a set packets is differen-
tiated based on their implicit membership of a labeled flow.
Flow processing is already taking place in the Internet at dif-
ferent vantage points today, with boxes like firewalls, NATs,
performance enhancing proxies, application-level gateways,
etc., looking at layer four and above to do their job. These
boxes quite prevalent: as we speak, more than a third of the
paths probed in a recent study show signs of L4+ middlebox
behavior [2].

Instead of fighting this trend, we choose to embrace it.
The CHANGE project [1] wants to create a new Internet ar-
chitecture where flow processing is not only permitted, but
encouraged. In the CHANGE vision, endpoints can request
and instantiate in-network processing from third parties de-
ploying flow-processing functionality. The resulting network
is both more flexible and easier to reason about than the In-
ternet we have today.

For flow processing to be viable, a number of mechanisms
are needed, including authentication of traffic owners, pay-
ment, discovery of platforms, and so forth. In this poster we
focus on the platform discovery platform: if an entity wants
its flow processed, how can it find a suitable processing plat-
forms? The position of the platform influences the commu-
nication delay between the source and the destination. In
order to make flow processing efficient, it is important that
the end-to-end delay stays low; this is currently the single
most important reason affecting user behavior.

A good platform discovery algorithm must find a number
k of processing platforms closest to the requesting entity. Out
of this set, the entity can choose the one that meets other arbi-
trary requirements, for instance network and processing ca-
pacity. Another important requirement is that ISP’s routing
policies should be obeyed, else flow processing will never be
deployed.

2. EXISTING SOLUTIONS
The problem we want to tackle is similar to finding the

best mirror(s) for a site. In the literature, there are two classic
solutions to this problem:

• Using IP Anycast [3]

• Using DNS plus geolocation [6]

IP Anycast is used by root DNS servers in order to route
root DNS requests to the server closest to the client. For our

needs, each processing platform can be configured with the
same global anycast IP address within a given prefix. Each
processing platform then acts as a BGP stub and announces
this global prefix such that it is distributed on the global In-
ternet scale.

This solution is very efficient for locating nearby plat-
forms: a single message suffices to locate the closest plat-
forms. Using one anycast IP only finds the single closest
platform, which is not flexible enough for our needs.

Another solution based on DNS and geolocation is used
by well-known CDNs, like Akamai or Amazon. The DNS
server holds a database of all platform locations. When a re-
quest arrives, the platform uses geolocation to map the client
into a geographical area. Then, it chooses the k platform(s)
that are geographically closest to the client. This solution
is based on the assumption that geographical proximity is
correlated with low network delay, which is generally true.
However, this solution is not 100% accurate: it breaks down
when geolocation is not accurate, as is the case for provider-
independent addresses.

Another disadvantage of this solution is the need to have
a global database of platform locations. This is entirely fea-
sible for CDNs like Akamai, but may be infeasible in the
federated model of the Internet. Internet Service Providers
may be reluctant to give away the exact positioning of the
platforms, as it may be regarded as confidential information.

Finding the k closest platforms to requester can be done
using network coordinates[5] or systems like Meridian[7],
but these systems ends up being inaccurate because of triangle-
inequality violations in the Internet, and are not compliant
with ISP policies. Further, the discovery latency and the
number of messages needed are quite big.

3. OUR PROPOSAL
The only existing solution which preserves routing poli-

cies is based on IP Anycast, but the solution only finds the
closest platform to the requester. An obvious extension is to
have k or more anycast addresses, split the platforms into k
groups and assign one address to all the hosts in the same
group. The important question is: how do we assign these
addresses such that the platforms found by each host via IP
anycast are indeed the k closest platforms to it? And if they
are not the k closest, how do we minimize the average in-
crease in delay?

We want as few IP anycast addresses as possible: using
many IP anycast addresses has an overhead as it increases

1

 0

 20

 40

 60

 80

 100

 120

 140

 0 50 100 150 200

R
e
la

ti
v
e
 E

rr
o
r

Number of Anycast Addresses

Relative Error for Kruskal Anycast k=10

Set 1
Set 2
Set 3

Figure 1: Relative error for N = 1000 platforms

the total number of BGP UPDATE messages in the global
routing system.

In the following, we present our solution which uses the
classical Kruskal minimal spanning tree algorithm as a start-
ing point. The algorithm assigns x anycast addresses to N
platforms (k≤ x≤ N), where x is a parameter. The idea is to
split these N platforms in clusters with maximum x members,
each of these members being connected to the other mem-
bers with the minimum cost edge; this ensures that nearby
servers are placed in the same clusters. To allow precise
lookups, inside these clusters each platform has a different
anycast address.

Our algorithm has two distinct parts. First, split platforms
into clusters where each member has a different address.
Second, assign addresses to each cluster member.

The first part is done using a modified Kruskal[4] spanning-
tree algorithm. From the original algorithm is kept the idea
of merging two different clusters if an edge is found a edge
with certain properties is found. The properties we require
are: a) the edge connects two different clusters, b) the edge
has the minimum cost and c) the total number of vertices in
the two clusters must be lower than x.

After each cluster is formed, we must assign to each mem-
ber a different anycast address. The assignment of addresses
is made taking the edges in descending order of cost and
assign the same minimum possible address to the platforms
connected by one edge.

3.1 Algorithm Evaluation
We measured the performance of Kruskal Anycast algo-

rithm on a simulation of 1000 platforms. All platforms are
directly connected and the delay between any two platform
is chosen randomly between 0 and 1000ms. We run our al-
gorithm using three random topologies, and fixed k = 10 and
varied x between 10 and 200.

For each value of x anycast addresses, we calculated the
mean delay to the closest k platforms computed by our algo-

Algorithm 1 Assign x anycast addresses to N platforms
Require: x≤ n∧G = complete delay graph

Sort each edge from G in ascending order
Put each platform in its own cluster
i← 0
while #each cluster < x∨ i < N do

u← le f tnodeedgei
v← rightnodeedgei
if clusteru 6= clusterv∧#clusteru +#clusterv ≤ x then

Merge clusteru clusterv
end if
i++

end while
i← N−1
while i≥ 0 do

u← le f tnodeedgei
v← rightnodeedgei
if clusteru 6= clusterv then

minaddress =find address(clusteru,clusterv)
addressu← minaddress
addressv← minaddress

end if
end while

rithm, and compared these results with the mean delay to the
true k closest platforms. We show our results in figure 1.

As we can see from graphic, the results aren’t influenced
by the topology, but are influenced by the number of an-
nounced addresses used. As expected, the more addresses
we announce the smaller the error. Interestingly, if we an-
nounce as little as 20 addresses, the error decreases to 20%;
this seems reasonable.

4. CONCLUSIONS
We have presented a solution to the platform discovery

problem needed for Internet-wide, flexible flow processing.
Our algorithm is a viable first step, but is not directly ap-
plicable as it requires centralized knowledge of platform-to-
platform delays. We are currently investigating a distributed,
online version of the same algorithm.

5. REFERENCES
[1] Change eu fp7 project. www.change-project.eu.
[2] Michio Honda et al. Is it still possible to extend tcp? In Proc. ACM IMC, 2011.
[3] Michael J. Freedman, Karthik Lakshminarayanan, and David Mazières. Oasis:

anycast for any service. In Proceedings of the 3rd conference on Networked
Systems Design & Implementation - Volume 3, NSDI’06, pages 10–10, Berkeley,
CA, USA, 2006. USENIX Association.

[4] J. B. Kruskal. On the Shortest Spanning Subtree of a Graph and the Traveling
Salesman Problem. In Proc. of the American Mathematical Society, 7, 1956.

[5] T. S. Eugene Ng and Hui Zhang. Predicting internet network distance with
coordinates-based approaches. In In INFOCOM, pages 170–179, 2001.

[6] Jianping Pan, Y. Thomas Hou, and Bo Li. An overview of dns-based server
selections in content distribution networks. Computer Networks, 43(6):695 – 711,
2003.

[7] Bernard Wong, Aleksandrs Slivkins, and Emin Gün Sirer. Meridian: a
lightweight network location service without virtual coordinates. SIGCOMM
Comput. Commun. Rev., 35:85–96, August 2005.

2

