
Scaling middleboxes with OpenFlow

Vladimir Olteanu
Universitatea Politehnica Bucuresti

Costin Raiciu
Universitatea Politehnica Bucuresti

1. INTRODUCTION
Middleboxes are widely deployed to perform various

functionality including policy enforcement and perfor-
mance optimization. They often constitute a single
point of failure; high availability solutions are usually
expensive and typically require the purchase of a hot
spare. Further, middleboxes can often be performance
bottlenecks: when networks grow beyond what a sin-
gle middlebox can handle, administrators are forced to
partition them. Upgrading usually means buying a re-
placement box, which is expensive and slow.
Programmable switches (such as OpenFlow) coupled

with x86 machines have been proposed as the natural
architecture to create scalable middleboxes that are also
easy to deploy and update [3]. The basic recipe is very
simple: a collection of x86 servers are connected to an
OpenFlow switch, which is in turn “on-path” for the
traffic. The servers implement distributedly the func-
tionality of a single middlebox, such as NAT or firewall.
The programmable switch is a key ingredient, splitting
load between the machines. When load changes new
machines can be added to the mix or existing machines
removed, without disrupting traffic.
There are two basic primitives needed to make such

distributed middleboxes practical. First, traffic must be
load balanced to the servers according to their capacity.
Secondly, when load changes and machines are added
or removed, per-flow state must be moved accordingly.
In this work we focus on load-balancing.
OpenFlow switches process traffic according to a lim-

ited number of rules on packet headers that are chosen
and installed by an out-of-band controller [5]. In theory,
per-flow rules could be used for load-balancing, but this
solution is constrained by the rule memory available in
switches, currently reaching a few thousands.
In this work we propose a novel load-balancing algo-

rithm for such middleboxes. It handles arbitrary traffic
distributions and server capacities using an average of
2-3 rule pairs per server. On top, we implemented a
reactive algorithm that checks current traffic distribu-
tions and re-balances if the servers are unevenly loaded.

2. LOAD BALANCING ALGORITHM
A good scheme for splitting incoming traffic across

several machines would need to provide good balance
and require as few rules as possible.
One common way of splitting traffic is hashing each

packet’s 5-tuple. For instance, Equal Cost Multipath [8]

splits flow across equal cost routes to the destination by
choosing an outgoing route with a hash of each packet’s
5-tuple. Version 1.0 of the OpenFlow standard [1],
and consequently all commercially available OpenFlow
switches, do not support hashing. The newly-released
version 1.1 of the standard [2] allows for a ”switch-
computed selection algorithm”, leaving decisions regard-
ing its actual functionality up to the vendor; it is unclear
what hashing functionality the switches will support.
5-tuple based hashing ensures that all packets belong-

ing to a TCP flow will be forwarded to the same box,
thus allowing stateful middleboxes. However, even if it
were implemented, it is not sufficient for most middle-
boxes due to additional application-level constraints.
Take network address translation as an example, with

a host initiating a TCP connection from private IP ad-
dress X and port x. The current best common practices
document require NATs to perform endpoint-independent
mapping, i. e. to allocate the same external IP Y and
port y regardless of the destination address and port of
the connection [4] (as long as these are not repeated).
To implement this behaviour with our architecture we
should load balance based on the source IP and port,
rather than the 5-tuple. Next, consider scaling a data-
center firewall with hundreds of thousands of rules; a
natural way to distribute this on many machines is to
split rules based on destination addresses (and possi-
bly port numbers). This requires load balancing based
on the destination address rather than the 5-tuple. In
short, load-balancing needs to move beyond the 5-tuple
and be applicable to different fields in the headers.
To implement load balancing with a small number of

rules we use the IP prefix matching support in Open-
Flow switches. The IPv4 address space can be repre-
sented using a binary tree, with 0.0.0.0/0 as the root,
0.0.0.0/1 and 128.0.0.0/1 as its children etc. Splitting a
node always yields two children whose network mask is
longer by one bit. The first child will have the newly-
acquired bit set to 0, while the other one will have it
set to 1. The address space is fully covered by the leaf
set of any arbitrarily-constructed tree.
Our algorithm needs accurate information regarding

each leaf’s load. It is run periodically by the controller
and uses data provided by the machines processing the
traffic. The machines use the time between two consec-
utive runs to sample the traffic and gather said data.
In a nutshell, our algorithm greedily tries to assign

as much traffic to the least loaded server that can fit

1

de fau l t computer = pop (computers)
de fau l t computer . load = root . load
while not over loaded (de fau l t computer)

computer = pop (computers)
l e a f = pop (l e av e s)
i f f i t (l e a f , computer)

a s s i gn (l e a f , computer)
de fau l t computer . load −= l e a f . load

else
(l e f t , r i g h t) = s p l i t (l e a f)
push (l eaves , l e f t)
push (l eaves , r i g h t)

push (computer , computers)

Figure 1: Load balancing algorithm pseudocode.

it. The algorithm starts off with the root of the IP
address space and selects a “default” server, which is
assigned every unallocated prefix (which can be sum-
marized by a low priority set of rules that match any
prefix (0.0.0.0/0)). It greedily attempts to assign the
largest leaf to the computer that can accommodate the
most traffic. If the leaf is too large to fit, it is split.
The algorithm stops when the “default” computer is no
longer overloaded.
We define imbalance as the proportionally most “over-

worked” computer’s load over the load it was supposed
to have. The algorithm attempts to keep the imbalance
under a user-configured maximum.
Figure 1 shows a simplified and unoptimized version

of the algorithm. pop always returns the computer with
the most unused capacity for processing traffic, or the
leaf with the most traffic. A computer is considered
to be overloaded when its load exceeds the load it was
supposed to have by at least the same percentage that
is indicated by the maximum imbalance.
In order to reduce the number of assignments, once

the largest leaf’s load falls below a certain threshold
(dubbed the chunk threshold), the algorithm stops look-
ing for leaves that will “fit” and starts looking for leaves
that will not overload the computer.
Related Work A load-balancing algorithm making use
of prefix matching was proposed by Wang et al. [7]
assuming traffic is uniformly distributed across IP ad-
dresses, and that the sum of server capacities is a power
of two; these assumptions rarely hold in practice [6].

3. IMPLEMENTATION
The load-balancer runs on a controller box and ini-

tially assumes traffic is uniformly distributed across the
IP address space and assigns it to servers. As time
passes the controller learns the real traffic distribution;
if the imbalance grows the algorithm is rerun and the
resulting rules are installed on the switch.
The controller is based on NOX. It supports any state-

less packet inspection/processing scheme, such as fire-
walls. Both controller and servers run vanilla Linux 2.6.
To estimate traffic accurately we have implemented

a Linux kernel module that runs on each server and es-

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 0 100 200 300 400 500 600 700 800 900 1000

A
ve

ra
ge

 p
re

fix
 c

ou
nt

Machines

with aggregation
without aggregation

Figure 2: Average number of prefixes.

timates traffic distribution within its assigned prefixes.
The implementation uses a high priority Netfilter hook
that samples 1 in 100 packets that are forwarded by
the machine and stores per-prefix counters in a radix
tree. The controller monitors the traffic distribution by
periodically polling servers.

4. EXPERIMENTS
Early experiment results hint at a linear correlation

between the number of machines and the number of
allocated prefixes, yielding less than 3 prefixes per ma-
chine if the maximum imbalance is set to 1.1. As each
prefix translates into 2 OpenFlow rules and typical switches
have around 50 ingress ports, we can expect to use less
than 300 rules for a full-blown deployment, which is well
within a switch’s capabilities.
Figure 2 shows how the average number of prefixes

varies with the number of machines. We have used five
different synthetic functions to simulate traffic distribu-
tion: 2 Gaussian bell curves, one constant function and
2 random distributions. Each of them yielded similar
results and the graph was plotted using their average.
The algorithm’s running time is less than 7ms when

assigning prefixes to 1000 servers.

5. REFERENCES
[1] Openflow switch specification, version 1.0.0.
[2] Openflow switch specification, version 1.1.0.
[3] A. Greenhalgh, F. Huici, M. Hoerdt, P. Papadimitriou,

M. Handley, and L. Mathy. Flow processing and the
rise of commodity network hardware. SIGCOMM
Comput. Commun. Rev., 2009.

[4] S. Guha, K. Biswas, B. Ford, S. Sivakumar, and
P. Srisuresh. NAT Behavioral Requirements for TCP,
2008.

[5] N. McKeown, T. Anderson, H. Balakrishnan,
G. Parulkar, L. Peterson, J. Rexford, S. Shenker, and
J. Turner. Openflow: enabling innovation in campus
networks. SIGCOMM Comput. Commun. Rev., 2008.

[6] J. Wallerich, H. Dreger, A. Feldmann,
B. Krishnamurthy, and W. Willinger. A methodology
for studying persistency aspects of internet flows.
SIGCOMM Comput. Commun. Rev., 2005.

[7] R. Wang, D. Butnariu, and J. Rexford. Openflow-based
server load balancing gone wild. Hot-ICE’11.

[8] Z. C. Zheng, Z. Wang, and E. Zegura. Performance of
hashing-based schemes for internet load balancing,
1999.

2

