
netmap: framework for very fast access to network devices

Matteo Landi
Dip. di Ingegneria dell’Informazione

Università di Pisa, Italy
matteo@matteolandi.net

ABSTRACT
The increasing availability of high speed network adapters
at very low costs, leads to the possibility of creating high
performance network applications (software switches, traffic
monitors and generators, firewalls, etc.) with the utilization
of commodity hardware. However, in order to exploit the
power of such devices, OS kernels need to be modified, cast-
ing away all those heavy operations thought for a general
purpose usage. In this work we present netmap, a sys-
tem that integrates the strengths of existing proposals and
addresses their weaknesses. First an abstraction layer has
been implemented on top of network adapter kernel struc-
tures. Then, these wrappers have been exposed to userspace
by means of memory mapping, so that programs could di-
rectly manipulate packets at application level and synchro-
nize with Kernel only when needed. With netmap we have
been able to saturate the link capacity on both 1 Gbit and
10 Gbit network adapters. The reasons behind such increase
of performance are to be found first and foremost in the pre-
allocation of packet buffers, then in the reduced utilization of
system-calls (possibly amortized over packet batches), and
finally in the minimized overhead due to encapsulation and
metadata management.

1. INTRODUCTION
One thing in common between systems such as software

routers, switches, intrusion detection systems and monitors,
is the ability to move packets as quickly as possible between
the wire and the application.

There are three are the main components involved in such
task, namely: network interface controllers (NICs), device
drivers, and the Operating System (OS). NICs usually man-
age network packets with the aid of circular queues (rings),
containing the so called packet descriptors; each descriptor is
a container in which device drivers store information about
network packets, such as the physical address of the packet

buffer, its length and some control flags. OS on the other
hand keeps track of network packets by means of shadow

copies of NICs data structures in order to store useful infor-
mation such as packet dimension, sender/receiver addresses
or either control flags handling packet fragmentation.

However, depending on the needs it is possible for dedi-
cated appliances to remove unnecessary software layers and
address the problem by taking direct control of the hard-
ware. This way researchers and developers succeeded in
taking full advantage of the hardware and send millions of
packets per second using modified Click Drivers [1, 2] or
either exporting packet buffers to userspace [3]. Moreover,

Shared memory region

num_rings

ring_ofs[]

ring_size
cur
avail
flags
buf_ofs
flags len index

phy_addr
len

pkt_buf

pkt_buf

pkt_buf

pkt_buf

netmap_if netmap_ring NIC ring

Figure 1: netmap structures implementing the hard-
ware independent abstraction layer (netmap inter-

face and netmap rings shared with applications, and
packet buffers shared with both applications and
NICs).

if on the one hand giving applications direct access to the
hardware would enable the possibility to leverage the power
of the network hardware, on the other makes the system
vulnerable against potential malicious applications.

The framework netmap [4] presented in this work, en-
ables userspace applications to process (and possibly for-
ward) network packets at wire-speed preserving the safety
and the convenience of a rich and portable execution envi-
ronment, as conventional OSs offer. Even if applications in
need of sending and receiving packets at very high speeds are
asked to be re-implemented based on the native netmap
API, it is possible for existing applications to exploit the
power of the framework thanks to wrapper libraries (e.g.
mapping libpcap calls onto netmap ones).

2. ARCHITECTURE
Applications in need of putting a certain interface into

netmap mode, would open the file /dev/netmap and issue
a special ioctl(); as a direct consequence of this registra-

tion, NICs get partially disconnected from the stack, for that
standard ioctl() commands used to configure and modify
interface options are still operational on netmap file de-
scriptors. Packets on the other hand are no more exchanged
with the host stack by mean of the standard socket interface,
but rather are stored into pre-allocated buffers made avail-
able to applications through the system call mmap() (Fig. 1).
This shared memory region is also used to store structures
called netmap rings which represent an abstraction layer en-
abling applications to access network packets in a hardware
independent way; moreover, particular attention has been



spent to minimize the amount of information stored inside
these objects so that to reduce their management overhead
(those structures contain indeed a pointer from which to
start reading or writing packets, the number of available
slots, and for each slot, the size of the payload, the index of
the buffer, and a couple of status fields).

2.1 Multi-queue NICs
It is becoming more frequent to see high speed network

adapters succeeding in sending millions of packets per sec-
ond making use of multiple hardware queues so that multiple
CPU cores could be assigned to each of them independently.
netmap has been thought to benefit of this feature too, in
particular to each network interface is associated a number
of netmap rings equal to the number of hardware queues
actually in use by the driver: this way it is possible to use
different file descriptors to process different adapter queues
in a complete independent way without any need of synchro-
nization or any sort of locking mechanisms.

3. SYSTEM SAFETY
It is true that netmap enables applications to access the

internal structures of network devices; but it’s even more
true that applications are allowed to modify only the con-
tent of received/transmitted packets or packet buffers in-
dices. This way, device drivers are always guaranteed to
cope with valid virtual and physical addresses only, hence
malicious applications are unable to crash the whole system.

3.1 Packet processing
Applications interested in packet reception should first of

all wait for packet availability: this is achieved, depending
on the applications, by issuing a non-blocking ioctl(fd,

NIOCSYNCRX) or either a blocking poll(...) call. On the
return of these system calls, applications are guaranteed that
the status of netmap rings is matching the one of the hard-
ware ones, hence avail packets starting from the cur-th ring
slot are ready to be processed.

On the transmit side things are not that different: in
particular, applications will issue either a ioctl(fd, NIOC-

SYNCTX) or a poll() in order to find if there is room for
at least one packet to be filled; on the return of such calls,
avail packets are ready to be filled by applications, starting
from the cur-th slot of the ring.

Finally, values of rings modified also by userspace applica-
tions (i.e. cur and avail) will be used in subsequent system
call to tell the kernel which buffers have been consumed.

4. PERFORMANCE ANALYSIS
We were able to test the performance of the implemented

framework inside different scenarios, varying for example the
model of the network adapter, the clock speed of the CPUs,
and also the number of active CPU cores; moreover, we de-
veloped a couple of ad hoc applications (common network
traffic analysis applications) able to leverage the new net-
work machinery.

Using a dual port 10 Gbit/s card based on the Intel 82599
chip, mounted on a system equipped with an Intel Core i7-
870 Processor, we were able to send minimal size packets
(64 bytes) at peak rates of 14.88 millions of packets per
second (Fig. 2). For additional information a more detailed
performance analysis is presented in [4].

0

2

4

6

8

10

12

14

16

0 0.5 1 1.5 2 2.5 3

T
h

ro
u

g
h

p
u

t 
(M

p
p

s
)

Frequency (GHz)

Wire limit: 14.88 Mpps

pkt-gen (4 cores)
pkt-gen (2 cores)
pkt-gen (1 core)

netsend (4 instances)
netsend (2 instances)
netsend (1 instance)

Figure 2: TX throughput comparison between a
netmap-based packet generator and a standard one.

5. STATUS AND FUTURE WORK
The current prototype of netmap, developed on

FreeBSD, consists of about 2000 lines of code for device func-
tions (ioctl(), select()/poll()) and driver support, plus
individual device driver modifications (mostly mechanical,
about 500 lines each), to interact with the netmap rings.
Moreover, a pcap-like library has been developed to make
existent applications (e.g. Click and Open vSwitch) trans-

parently benefit of the new framework [5].
Even if few standard drivers have already been modified

to add netmap support (ixgbe, em, re, rl), we hope to
spread the number of supported NICs as much as possible;
moreover, ongoing work is trying to implement new features
to the framework such as enabling applications to modify a
number of rings greater than the actual number of hardware
ones supported by network adapters (in order to let multiple
applications to work with the same network adapter despite
the number of hardware queues).

6. REFERENCES
[1] E.Kohler, R.Morris, B.Chen, J.Jannotti,

M.F.Kaashoek, The Click modular router, ACM
TOCS, vol.18, pp.263–297 2000

[2] M.Dobrescu, N.Egi, K.Argyraki, B.G.Chun, K.Fall,
G.Iannaccone, A.Knies, M.Manesh, S.Ratnasamy,
RouteBricks: Exploiting parallelism to scale software
routers, ACM SOSP, 2009

[3] S.Han, K.Jang, K.Park, S.Moon, PacketShader: a
GPU-accelerated software router, ACM SIGCOMM,
2010

[4] L.Rizzo, netmap: fast and safe access to network
adapters for user programs, Technical report,
http://info.iet.unipi.it/∼luigi/netmap/rizzo-ancs.pdf,
Università di Pisa, Italy, 2011

[5] L.Rizzo, M.Carbone, G.Catalli, Transparent
acceleration of software packet forwarding using
netmap, Technical report,
http://info.iet.unipi.it/∼luigi/20110729-rizzo-
infocom.pdf, Università di Pisa, Italy,
2011


