
Aster*x: Load-Balancing as a Network Primitive

Nikhil Handigol
Stanford University

nikhilh@stanford.edu

1. INTRODUCTION

With the emergence of large web applications in the late
1990s, there was much interest in load-balancing to spread
incoming requests across a set of identical web servers. Usu-
ally, they exploit some trick in the network (e.g. DNS,
anycast, etc) to make it work without altering the network
logic [5]. Many commercial load-balancing products have
been built that sit on the path of incoming requests and
spread them over a set of servers [2]. Load-balancing is used
increasingly for other tasks beyond balancing web requests
too. For example, it is used in CDNs for serving content
from multiple servers. It has become a commonly used ele-
ment of all scale-out network services.

Current load-balancing methods make a number of as-
sumptions about the services:

• Requests enter through a single point in the network; the
load-balancing device is placed at a choke point through
which all traffic must pass. For networks where this con-
dition does not hold true, operators end up using many
of these expensive devices. Yet, they create congestion in
the network. Figure 1 shows a typical datacenter archi-
tecture [1] with load balancers placed at choke points.

• The network structure is regular. In practice, it may be
(e.g. a datacenter); but enterprise networks are not.

• The congestion is at the servers, not within the network.
Again, this may be true in datacenters hosting only one
service. In a cloud datacenter with many services, the
network may be congested differently in different places.
Often datacenters don’t have full bisection bandwidth and
can be congested. In an enterprise network, there can be
many choke points, like egress connections to the WAN,
campus backbones, etc.

• The servers are static. Operators of virtualized data-
centers move VMs around to make efficient use of their
servers. As VMs move, the load-balancers need to track
their location so as to direct new requests to the right
place.

• The network load is static. Most load-balances spread
traffic obliviously through the network, using static
schemes like ECMP. This is suboptimal when some parts
of the network are congested.

• All services need the same load-balancing algorithm. This
means the service provider has to use the same scheme for
load-balancing, say, HTTP requests and video requests;
or he has to install two load-balancers. In virtualized
data centers this will be much harder as more services will
be deployed by different users, and they will be moving
around.

Load−Balancer

...

...

......

Load−Balancer

Internet

Figure 1: A typical datacenter architecture with load-
balancers placed at choke points.

Our work is premised on the following observation: load-
balancing is essentially congestion-aware routing (based on
network and server congestion). It, therefore, leads us to the
belief that load-balancing should be an integral property of
the network. If we think of the network datapath as im-
plementing a basic small set of “plumbing primitives” (e.g.
forward a packet to one or more ports) then load-balancing
fits nicely into this model. It just means that the datapath
has to intelligently (and dynamically, and quickly) decide
which outgoing port to send a request to, and make sure
all the packets associated with the request follow the same
path to the same server. We therefore seek a solution with
the following characteristics:

• Distributed: If every switch in the network can load-
balance incoming requests, we don’t need to re-design the
network to accommodate the load-balancers – it simply
becomes a property of the network. We can do away with
choke points and constrained routing. It is then naturally
scalable too - just add more switches.

• Dynamic: It must react to network and server conges-
tion, and pick routes and servers accordingly.

• Auto-configured: It must automatically adapt and
scale when servers and network capacity are added or
deleted. It must continue to operate as servers move
around (e.g. VM migration).

• Flexible: It must balance load in a way that is optimized
for each service or application; the service creator must
be able to decide how load is balanced. This means new
algorithms must easily be created, tested and deployed.

We describe Aster*x, a prototype distributed load-
balancer. Aster*x is premised on the belief that every switch
and router should easily be able to do load-balancing, and
that it is cheap to do so. Our approach builds on the grow-
ing trend towards “software-defined networking”, such as
OpenFlow [4]/NOX [3]. In these approaches, the network
switches are treated as a dumb, minimal flow-based datap-
ath, under the control of a remote, software control plane.
OpenFlow is the common, narrow, vendor-agnostic interface
to the flow switches; NOX is the control plane upon which
services like Aster*x are built.

Aster*x treats each individual request - or a bundle of ag-
gregated requests - as a flow, and decides how to route the
flow. The flow could be, for example, a single HTTP re-
quest, or it could be all the requests for a particular service.
Aster*x can decide whether to route each individual request,
or use ECMP-like oblivious load-balancing in any combina-
tion. For example, it could choose to send all HTTP requests
to one pool of servers, and all video requests to another pool;
and then do ECMP-like load-balancing over each pool. Or
it could choose to do oblivious load-balancing over different
regions of a data center, then do careful, per-request load-
balancing within one region. The key here is that Aster*x
can be used flexibly to define how the load-balancing is done,
under the control of the service or application. It is not pre-
defined by a fixed-function load-balancer. Aster*x has the
following characteristics:

• Distributed throughout the network: If the switches are
low-cost OpenFlow-enabled switches, then they can do
load-balancing. It is therefore very scalable.

• Logically centralized: Load-balancing is defined in one
place for the entire network – in the control plane app. It
is easy to scale by replicating the control plane.

• Flexible: Each service can have its own load-balancing
algorithm. Each type of request can be load-balanced by
a combination of oblivious and intelligent (flow-by-flow)
schemes depending on the needs of the service, and the
capabilities of the datapath and controller. The service
creator is free to decide.

• Build now, change later: Because the datapath sup-
ports general load-balancing, we don’t need to decide how
load-balancing will work when the datacenter is built; we
can evolve it over time to suit the services deployed.

2. DESIGN AND IMPLEMENTATION

Aster*x uses the OpenFlow architecture to measure the
state of the network, and to directly control the paths taken
by requests. The load-balancing logic resides in the Aster*x
controller, built as a NOX application.

One of the design goals of Aster*x is to let the service
providers choose the best way to load-balance their requests
based on their application type and performance metric.
Some of the options that applications have in Aster*x are:

• Pro-active vs. reactive: The load-balancing decision
can be made pro-actively, or reactively upon arrival of
each request.

• Individual vs. aggregated: The load balancing deci-
sion can be made on individual requests, or on aggregated
bundles of requests, or any combination of the two.

• Static vs. dynamic: The load-balancing strategy can
be completely static, oblivious to the network or server

Feedback

Network
State

Requests

Network of

OpenFlow switches

Net Manager Host Manager

Flow Manager

Content

controller
Aster*x

Server

Figure 2: Design of the Aster*x controller which implements
the main control logic of the whole system.

load (e.g., ECMP-like uniform spreading), or load-aware
and dynamic in any combination.

To perform load-balancing, the Aster*x controller relies
on three functional units, as shown in Figure 2:

• Flow Manager: This module manages and routes flows
based on the specific load-balancing algorithm chosen.

• Net Manager: This module is responsible for keeping
track of the network topology and its utilization levels.

• Host Manager: This component tracks the individual
servers in the system and monitors their state and load.

The following is a short video (8 minutes) of a live demon-
stration of Aster*x that we presented at the 9th GENI En-
gineering Conference, held at Washington DC on November
3, 2010: http://goo.gl/1U3hg

3. FUTURE WORK

As future work, we plan to understand the performance
trade-offs of various load-balancing schemes provided by
Aster*x for different types of services - HTTP, streaming
media, etc. - and their combinations. We also plan to ex-
plore novel load-balancing algorithms for different networks
and demand patterns.

4. REFERENCES
[1] Cisco Systems - Data center: Load balancing data center

services. https://learningnetwork.cisco.com/docs/
DOC-3438, 2004.

[2] F5 BIG-IP Local Traffic Manager. http://www.f5.com/
products/big-ip/product-modules/
local-traffic-manager.html.

[3] N. Gude, T. Koponen, J. Pettit, B. Pfaff, M. Casado, and
N. McKeown. Nox: Towards an operating system for
networks. In ACM SIGCOMM CCR, July 2008.

[4] N. McKeown, T. Anderson, H. Balakrishnan, G. Parulkar,
L. Peterson, J. Rexford, S. Shenker, and J. Turner.
OpenFlow: enabling innovation in campus networks. ACM
SIGCOMM Computer Communication Review, 38(2):69–74,
April 2008.

[5] K. Salchow Jr. Load Balancing 101: The Evolution to
Application Delivery Controllers. F5 White Paper.

https://learningnetwork.cisco.com/docs/DOC-3438
https://learningnetwork.cisco.com/docs/DOC-3438
http://www.f5.com/products/big-ip/product-modules/local-traffic-manager.html
http://www.f5.com/products/big-ip/product-modules/local-traffic-manager.html
http://www.f5.com/products/big-ip/product-modules/local-traffic-manager.html

	Introduction
	Design and Implementation
	Future Work
	References

