
An OpenFlow Compliant Smart Switch for
monitoring applications

Andrea Di Pietro
Dept. of Information Engineering, University of Pisa, ITALY

Email: {andrea.dipietro@for.unipi.it

Abstract—In this paper we propose a novel hardware-software
co-design vision that aims at enhancing flexibility and reusability
of hardware based packet forwarding engines. In particular, we
move on the path of the well-known OpenFlow architecture. How-
ever, although such approach is certainly powerful, it is biased
towards routing-related applications: its main goal is to allow
the software control plane to arbitrarily route a packet flow. We
believe that a similar paradigm, encompassing high performance
packet forwarding hardware driven by a flexible software control
plane, may be beneficial even to other kinds of applications, like
monitoring and measurements. Unfortunately, the primitives that
the OpenFlow protocol provides are in many cases not flexible
enough for such purposes. For this reason, we propose a flexible
packet forwarding architecture based on regular expression that,
besides enabling standard-compliant OpenFlow switching, can
be easily reconfigured through its control plane to support other
kinds of applications. We implemented a working prototype of
out architecture by using the well-known NetFPGA board.

I. INTRODUCTION

The big advantage of the OpeFlow paradigm is the sep-
aration between the data plane (whose functionality is fixed
and which can be optimized for high performance) and the
routing intelligence, which is left for the user to implement
through a well defined standard interface. Several works, such
as [1], showed that network monitoring applications can also
benefit from an OpenFlow switch, which can be used in order
to dispatch packets and flows to an array of software based
sensors. However, the standard OpenFlow protocol, which
limits the definition of a flow to a 10-tuple of fields extracted
from layer 2-4 headers, is a bit limiting for such use case. For
example, it does not allow to demultiplex packets based on
a the presence of a certain pattern in their payload (in turn,
revealing a particular application), which would be very useful
for application level monitoring. For this reason, we propose
a novel switching architecture which, unlike OpenFlow, is
based on regular expressions. A regular expression provides
a concise and flexible means for matching particular patterns
over a flow of characters. A common use case for regular
expressions is deep packet inspection for intrusion detection.
In our architecture, instead of defining a flow in terms of a
tuple (with possibly undefined values), we define it in terms
of a pattern described as a regular expression. Such a different
approach allows to define a flow in a very flexible way: the
fields of interest (which can be specified according to the
application and may include part of the payload) in the packets
are extracted to make up a string, which is then walked through
by our regular expression processor. The rest of the paper is

organized as follows: in section II we describe the high level
architecture, while in section III we present the implementation
details of the prototype we implemented on a NetFPGA board
and in section IV we explain how the proposed architecture
(beside supporting the OpenFlow standard) can support further
applications.

II. SMART SWITCH ARCHITECTURE

The process of IP packet forwarding depending on arbitrary
metadata (i.e., one or more OSI layers) contained in the
packets themselves is logically (and practically) equivalent
to perform pattern matching. The search in the forwarding
table can therefore be obtained by simply applying pattern
matching algorithms upon arbitrary metadata extracted from a
specific IP packet. As pattern matching is a widely addressed
topic in literature, the above observation opens a wide horizon
of theoretical and practical solutions to address the problem
of lookup and classification. Typically, finite automata (FAs)
are employed to implement regular expression search, but for
realistic rule sets they need a memory amount which turns out
to be too large for practical implementation. We have chosen
for our scheme the δFA [3] which presents interesting perfor-
mance characteristics. In particular, in addition to maintaining
a data structure which is much more compact that the standard
automaton, it needs a lower number of memory accesses than
most compressed automata. The smart switch architecture is
organized into a software control layer and a hardware–based
packet switching component. While the latter is in charge
of actually performing regular expression matching over the
incoming packets and to forward them on the proper port based
on its output, the former is in charge of updating the data
structure representing the automaton, handling packets which
do not match any rule and implementing the interface with the
application(e.g. the OpenFlow protocol). The core module of
the switch is shown in figure 1. The first operation performed
on the incoming packet is parsing the fields of the packet
in order to compose the string which will be fed into the
δFA state machine. This operation is performed by “Metadata
Exctractor”, a configurable block that extracts the right fields
depending on the application (e.g. the OpenFlow 10-tuple).
The obtained string is passed to the “Pattern Matching En-
gine”, which starts walking through the δFA data structure one
character at a time. The result (i.e., the output port associated
with the flow) is then used in order to decide the specific
operation to be performed over the packet. When a packet



Resource Logic Utilization (%) Logic Distribution (%)
Slice Flip Flop 4 input LUTs Occupied Slices Total of 4 inputs LUTs RAMB16s

Smart Switch 32 42 66 49 65
OpenFlow on NetFPGA 47 75 91 80 65

TABLE I
COMPARISON IN RESOURCE UTILIZATION.

does not match any rules is sent to the control plane software
which, depending on the application logic, will take the proper
decision and, if necessary, update the automaton (in the case
the OpenFlow standard is being implemented, this will involve
interaction with the controller).

III. PROTOTYPE IMPLEMENTATION

We implemented a prototype of our switch as a module
of the well-known Netfpga platform. Our implementation can
hold more than 100000 flow entries and it is capable of running
at line-rate across the four NetFPGA ports. Differently from
the design of [4] (which places output queues in the fast yet
small BRAM memory) we decided to store both the automaton
meta-data and the output queues in the external SRAM. This
minimizes the risk of queue overflow, but on the other hand,
requires to limit the number of lookups in order to hit line
rate. For this reason, we implemented a flow–cache (in this
case a flow is defined as the standard five-tuple), where a
new entry is added when the first packet of a new flow enters
the system. Upon cache miss, the switch performs a lookup
in the δFA and stores the result in the flow cache. Since
the number of flows can be very high, a hash table is an
efficient way to implement such a cache. In order to avoid
collisions, we implemented a Perfect Hash Function (PHF)
through double hashing. The basic idea to create a PHF is
using a two-level hashing scheme with universal hashing at
each level. In the first level, the n keys are hashed into m slots
by using a hash function h carefully selected from a family
of universal hash functions. To handle collisions in a slot j, a
small secondary hash table Sj with an associated hash function
hj is used. By carefully choosing the hash functions hj , we
can guarantee that there are no collisions at the secondary
level. We compared the complexity of our Smart Switch to the
original OpenFlow running on NetFPGA as implemented in
[4]. The build results for the two designs are shown in table I.
These results were obtained by using Xilinx’s implementation
tools from ISE10.1.03. We report the values of logic utilization
and logic distribution considered in percentage. These results
suggest that in terms of logic utilization, our implementation is
more efficient than the original, although being able to handle
a larger number of rules (100000 against the 32000 claimed
in [4]). The BRAM occupation of our prototype, instead, is
equal to that of the other system, due to the amount of memory
required for implementing perfect hashing.

IV. USE CASES

Besides supporting the OpenFlow standard, our switch can
support different applications by using a proper set of regular
expressions and by configuring the meta–data extraction block.

Fig. 1. Core module of the Smart Switch.

In [5] we showed that the high entropy of the least significant
bits of IP addresses allows to use them as keys for load
balancing. In particular, by writing a set of regular expressions
that assigns different combinations of suffixes to different
interfaces it is possible to split the traffic coming from a
port into roughly equivalent portions. [5] shows that such
partitioning, although not perfect, is comparable to that of a
hash function computed of the flow keys (which is the typical
solution adopted by special purpose load–balancing devices).
Another possible use case of the smart switch (which we have
not implemented yet) is using it as hardware-based pre-filter
for Voip traffic monitoring. As RTP port numbers are notori-
ously dynamically assigned, that cannot be achieved by just
observing the OpenFlow 10-tuple and may be a cumbersome
task to be implemented in software at high speed. However,
some patterns in the packet payload (codec identifiers etc.)
can be expressed in terms of regular expressions and used to
filter out non–interesting traffic. The suspicious RTP traffic
(hopefully a much–reduced stream) can be then forwarded to
a software based sensor for further inspection.

REFERENCES

[1] A. Greenhalgh, F. Huici, M. Hoerdt, P. Papadimitriou, M. Handley,
and L. Mathy, “Flow processing and the rise of commodity network
hardware,” SIGCOMM Comput. Commun. Rev., vol. 39, pp. 20–26, March
2009. [Online]. Available: http://doi.acm.org/10.1145/1517480.1517484

[2] G. Antichi, A. D. Pietro, D. Ficara, S. Giordano, G. Procissi, and
F. Vitucci, “On the use of compressed dfas for packet classification on
netfpga,” in IEEE CAMAD, 2010.

[3] D. Ficara, S. Giordano, G. Procissi, F. Vitucci, G. Antichi, and A. DiPi-
etro, “An improved dfa for fast regular expression matching,” SIGCOMM
Comput. Commun. Rev., vol. 38, no. 5, 2008.

[4] J. Naous, D. Erickson, A. Covington, G. Appenzeller, and N. McKeown,
“Implementing an openflow switch on the netfpga platform,” in ACM
ANCS, 2008.

[5] G. Antichi, A. D. Pietro, D. Ficara, S. Giordano, G. Procissi, and
F. Vitucci, “Design and development of an openflow compliant smart
gigabit switch,” in IEEE GLOBECOM, to appear, 2011.


