
Open vSwitch: performance improvement
and porting to FreeBSD

Gaetano Catalli
University of Pisa

gaetano.catalli@gmail.com

ABSTRACT
OpenFlow switching enables flexible management of enter-
prise network switches and experiments on regular network
traffic. OpenFlow switches are in charge of packet forward-
ing, whereas a controller sets up switch forwarding tables on
a per-flow basis, to enable flow isolation and resource slicing.

The present work deals with Open vSwitch, a software
implementation for Linux platforms of an OpenFlow switch.
The current implementation includes both a specific kernel-
module and a totally userspace version of the program. The
bulk of the code is written in platform-independent C and
is easily portable to other environments.

In the first part of the work we performed the porting
of the userspace version of the software to FreeBSD. Then,
being the obtained performance unsatisfying, we proceeded
reorganizing portion of the code and eliminating some inef-
ficiencies. This led to performance about ten times greater
than before.

Finally, combining OVS with netmap, a recently devel-
oped framework for very fast access to network packets, we
had been able to further increase the program performance
of about four times, with peaks of 3.0 Mpps.

1. INTRODUCTION
Networks have become part of the critical infrastructure

of our businesses, homes and schools. On the other hand,
the enormous installed base equipment, and the reluctance
to experiment with production traffic, have created a con-
siderable obstacle for new ideas.

Virtualized programmable networks, such as GENI, could
lower this barrier to entry for new ideas, increasing the rate
of innovation in the network infrastructure. Programmable
networks call for programmable switches and routers that
can process packets for multiple isolated experimental net-
works simultaneously.

The OpenFlow [2] project aims to the deployment of such
a device, based on an Ethernet switch, with an internal flow
table and a standardized interface to add or remove flow
entries. The basic idea is to exploit the fact that most mod-
ern Ethernet switches and routers contain flow-tables that
run at line-rate (e.g. to implement firewalls, NAT, QoS,
etc.). While each vendor’s flow-table is different, an interest-
ing common set of functions that run in many switches and
routers has been identified. OpenFlow exploits this common
set of functions. Furthermore, OpenFlow provides an open
protocol to program the flow-table in different switches and
routers.

Communication
channel

Interfaces

ofproto datapath

OpenFlow
protocol

Controller

fast path

slow path

packet
arrival

Figure 1: Open vSwitch structure, representing the
flow of traffic in the system.

2. OPEN VSWITCH
Open vSwitch [3] (OVS) is an open-source software imple-

mentation of an OpenFlow switch, principally designed to
work as a virtual switch in virtualized environments. OVS
core is essentially formed by two entities that implements
different functionalities (Fig. 1).

The datapath performs the main switching activity, that
is taking network packets from an input port and managing
it in some way, depending on what is specified in the flow
table. For example, a packet could be simply forwarded
into another port, or dropped, or be modified before being
forwarded.

The ofproto module, instead, implements the switching
logic. In other words, it is ofproto that tells the datapath
what actions to associate to different flows by adding, re-
moving or modifying entries in the flow table. This module
also implements the remote configuration interface of the
switch, or rather the OpenFlow protocol.

Currently two different implementation of the datapath
are available, one that run completely in userspace and the
second that exploits a special Linux kernel module.

2.1 The porting process
The porting process involved the userspace portion of the

program. To make OVS run on FreeBSD, one of the lower
layers of the program, the one in charge of passing pack-
ets from the NIC up to userspace and viceversa, had been
reimplemented basing on bpf and libpcap.

During the porting process, some inefficiencies in the orig-
inal implementation, that led to poor performance (about
65 Kpps), became apparent. So, in the second part of the
work, we analysed the program bottlenecks and designed
and implemented possible solutions.



0

100

200

300

400

500

600

700

2 3 4 5 6 7 8

T
h

ro
u

g
h

p
u

t 
(K

p
p

s)

Port number

2 thread,burst=50
2 thread,burst=1

1 thread

Figure 2: Forwarding performance of the optimized
Open vSwitch code depending on the number of
ports attached to the switch.

2.2 Performance improvement
Analysing the program we discovered that its inefficiency

could be attributed to an ineffective management of the sys-
tem call poll(), and to the structure of the program main
loop.

After some attempts of optimizing the library that pro-
vides support for poll operations, without any significant re-
sult, we decided to drastically revise the program structure,
dividing it into two separate parts.

In the original implementation, all the ofproto and datap-
ath activities were performed within a single process, even if
they have evidently different requirements in terms of per-
formance.

Our idea had been to split them into two separate threads
so that the datapath should be able to run at a very fast rate
interacting with ofproto only in rare cases. One possibility
is that the datapath is not able to manage a packet, so it
has to pass it to ofproto by means of a shared queue. An-
other possibility is that ofproto wants to modify the datapath
flow-table in response to a message from the controller. In
all cases the communication between the threads had been
implemented with shared structures.

The datapath thread body, had been entirely reimple-
mented in order to optimize some operations. In particular,
we eliminated the inefficiencies related to the management
of the poll() system call, we improved the network pack-
ets reception exploiting the burst technique and finally we
modified the program in order to avoid the memory copy for
incoming packets.

As a result, the program performance increased more than
ten times (Fig. 2), with peaks of about 700 Kpps. At this
point, performance was no longer limited by the program
itself, but by the inefficiency of the kernel in providing high
speed access to raw network packets.

2.3 netmap integration
Netmap [4] represents an excellent solution to the above

mentioned problem. It is a recently developed framework
that provides very fast access to network packets, essentially
exploiting memory mapping, so that userspace programs can
directly access the kernel packet buffers without the need of
any memory copy.

Combining OVS with netmap had been the last step of the
work. Thanks to the simplicity of its API, we had been able

0

500

1000

1500

2000

2500

3000

1 10 100 1000

T
h

ro
u

g
h

p
u

t 
(K

p
p

s)

Burst size

netmap
bpf

Figure 3: Forwarding performance of Open vSwitch
on netmap.

to implement a small library that maps pcap functions onto
netmap. This way replacing bpf with netmap had not re-
quired any change to OVS code and, moreover, any existing
application based on pcap should take the same advantage.
The final results are very satisfying, since peaks of more
than 3.0 Mpps have been reached (Fig. 3). A more detailed
performance analysis is presented in [5].

3. CONCLUSIONS
In this work we dealt with Open vSwitch. We started

making the program executable on FreeBSD, reimplement-
ing the module that abstracts network devices. In the first
test session we obtained very poor forwarding performance
(about 65 Kpps). Consequently, we started inspecting the
code, discovering some inefficiencies related to the manage-
ment of the poll() system call by the program main loop.

In the second part of the work, we proceeded with the
implementation of possible solutions for such issues, sub-
stantially separating the fast portion of the program from
the slow one into two different threads. At the end of this
process, we were able to reach throughput values as much
as ten times greater than before (about 700 Kpps), making
OVS performance comparable with the kernel bridge one [1].

Finally, we combined Open vSwitch with a recently devel-
oped system, called netmap, that provides very fast access
to network packets. Thanks to this last enhancement we
touched very high packet rates, up to 3.0 Mpps.

4. REFERENCES
[1] A. Bianco, R. Birke, L. Giraudo, and M. Palacin.

OpenFlow Switching: Data Plane Performance.

[2] N. McKeown, T. Anderson, H. Balakrishnan,
G. Parulkar, L. Peterson, J. Rexford, S. Shenker, and
J. Turner. OpenFlow: Enabling Innovation in Campus
Networks.

[3] B. Pfaff, J. Pettit, T. Koponen, K. Amidon, M. Casado,
and S. Shenker. Extending Networking into the
Virtualization Layer. HotNets-VIII, 2009.

[4] L. Rizzo. netmap: fast and safe access to network
adapters for user programs.
http://info.iet.unipi.it/∼luigi/netmap/.

[5] L. Rizzo, M. Carbone, and G. Catalli. Transparent
acceleration of software packet forwarding using
netmap. Tech. Report, University of Pisa.


