
On IPv6 support in OpenFlow via Flexible Match Structures

Rodrigo R. Denicol,
Eder L. Fernandes,

Christian E. Rothenberg
CPqD - R&D Center for

Telecommunications
Campinas - SP - Brazil

{rdenicol,ederlf,esteve}@cpqd.com.br

Zoltán Lajos Kis
Ericsson Research
Budapest - Hungary

zoltan.lajos.kis@ericsson.com

1. INTRODUCTION
As is so common in technologies, low cost/performance

and flexibility conflict with each other. While software-only
routers lack of performance, network processors are regarded
as too complex to program, and hardware-based designs (in-
cluding commodity silicon) have been too inflexible [4]. Rec-
ognizing the different tradeoffs between these goals, recent
efforts [4, 7] advocate for a path towards flexible and efficient
networking gear based on co-evolving router hardware, ex-
tensible router software, and a clean interface between them.
For the latter, OpenFlow [3] is considered the best candidate
API available to unveil true innovation in networking.

Up to recently, the OpenFlow specification has worked
with fixed tupples (10 in v1.0 and 12/14 in v1.1) limiting the
available match fields to a hardwired subset of fields in the
protocol stack. The rigid flow match structure specification
is considered a risk to the protocol success and endangers the
promise of future-proof independent evolvability of the data
and control planes. To turn this over, OpenFlow 1.1 intro-
duces experimenter features that allow extensible matches,
actions, messages, and errors. The ability of extending the
flow match structure by defining new types of Flow Match
Structures (see A.2.3 [3]) allows controllers and switches to
agree on any flow matching syntax.

IPv6 [6] was designed with extensibility in mind. In ad-
dition to more efficient forwarding,the improved support for
extensions and options in IPv6 allows a greater flexibility
for introducing new options in the future. Basically, the
functionality of options and other rarely used fields is re-
moved from the main header in IPv4 and implemented in
IPv6 through a set of additional headers called extension
headers (EH), some of them based on a variable number of
“options” encoded in TLV format.

When IPv6 EHs are to be supported in OpenFlow, a
packet field above the base IP header may then occur at dif-
ferent bit positions. The extra switch complexity required
for IPv6 EH has two main disadvantages: One is an obvious
increase in switch production costs. The other is a higher

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
CHANGE & OFELIA Summer school ’11 Nov 7-11, 2011, Berlin, Germany
Copyright 2011 ACM X-XXXXX-XX-X/XX/XX ...$10.00.

probability that switch functionality becomes obsolete due
to the introduction of new, or changes to existing IPv6 EHs.
The required switch upgrades may jeopardize the cost sav-
ings that OpenFlow aims to enable.

In this poster, we show our ongoing work towards solving
part of one OpenFlow limitation: lacking of a flexible, ex-
tensible flow match structure. Our work takes on the TLV-
based structure NXM (Nicira eXtended Match) [1]. IPv6
traffic with multiple EHs is used as the test case to validate
the proposed extensible flow structure. Our software-based
prototype switch and NOX controller are based on Open-
Flow 1.1 and leverage the Network Protocol Description
Language (NetPDL) [9] to implement the parsing engine.
NetPDL provides a standardized syntax based on XML upon
which new protocol encapsulations, headers and fields can
be easily introduced.

2. DESIGN AND IMPLEMENTATION
Figure 1 shows the basic building blocks of our Open-

Flow 1.1 enabled setup used to validate NXM as a means to
extend OpenFlow to support IPv6 traffic. Both the Open-
Flow 1.1 NOX controller and the software switch [2] im-
plement the library (oflib) that holds the internal represen-
tations for each OpenFlow entity (messages, actions, etc.)
and provides the required conversion functions. Functions
like ofl_msg_unpack and ofl_msg_pack have been extended
to support the newly typed flow match structures.

The second important block to be enhanced is the parsing
engine that decodes the protocol stack, extracts the packet
header fields and stores them in an internal data structure.
Parsing needs to be done not only in the switch datapath but
also in the controller to extract the flow fields from packet-in
events and handle them to the application. Due to its exten-
sibility, parsing IPv6 traffic can be specially cumbersome,1

and the complete process becomes more challenging as the
number of supported fields and encapsulations increases.

In the following, we detail the focus of this poster, namely
the two pieces of work that contribute to protocol flexibility
and extensibility.

2.1 Flexible Flow Match Structure
While OpenFlow 1.0 used a fixed-length struct ofp_match

for specifying flow matches, version 1.1 of the protocol in-
troduces a ofp_match_type field in the flow match struc-
ture that allows introducing new extensions by defining new

1Because of this, IPv6 with EHs are commonly handled in
the software-based slow path of commercial equipments.

IPv6_Test_Fwd App

Datapath

Controlpath

Parsing
(flow extract)

pkt-in

OF 1.1 Protocol + NXM

Flow Match
handlers(pkt)
-> flow fields

Flow Table

lookup (IFS)

Apply actionsUpdate stats
pkt-out

add (IFS)

Parsing
(flow extract)

NOX
pkt-in(IFS, (pkt)) flow_mod (IFS, actions)

NetPDL

instruction = go_to_table_x

dp_execute_actionupdate (IFS)

IFS = Internal Flow Structure
NXM = Nicira eXtensible Match

lib
(un)packOF.1.1

lib
(un)packOF.1.1

Figure 1: Building blocks of the NXM-extended
OF.1.1 switch and controller proof of concept im-
plementations supporting IPv6 traffic handling.

Figure 2: Extensible flow match structure.

match types. Figure 2 shows the proposed extensible flow
match structure, called ofp_ext_match and based on a flex-
ible array structure. Each element in the array contains a
variable-length TLV entry that follows the NXM format. In
NXM, a 32-bit header (Fig. 3) acts as the TL part that iden-
tifies the vendor/experimenter, the packet field, the presence
of a mask (hm – has mask), and the length in bytes of the
value plus optionally mask fields. Figure 4 exemplifies one
NXM entry encoding a masked MAC address.

2.2 NetPDL
The Network Protocol Description Language (NetPDL) [9]

is an extensible, XML-based language for describing the for-
mat of protocol headers and the encapsulation rules between
different protocols. NetPDL supports a myriad of protocols
and cyclic encapsulations (e.g., an IPv4 packet tunnelled
within another IPv6 packet). As many other technologies
(e.g., XDR, ASN.1, IDL), NetPDL can be used to gener-
ate C code implementing packet processing [8], thus being
able to run this code (natively) at very high speed.2 By in-
cluding the NetPDL-based packet decoder C application [5]
as an independent parsing module in the architecture (both
the controller and the switch), new protocols can be easily
supported by updating the XML-based protocol database.
Since an IPv6 header possibly consists of various optional
headers; the number and type is not known in advance.
NetPDL has shown to be very effective in extracting fields
from complex IPv6 header combinations by defining <loop>,
<switch>, <block> and <includeblk> elements.

2For hardware environments, an interesting line of research
would be the automatic generation of NP or VHDL code.

Figure 3: The NXM header is interpreted as a 32-bit
word in network byte order.

Figure 4: NXM-encoded Ethernet address with
mask (48-bit nxm value, hm=1, nxm length=12).

3. CONCLUSIONS AND PATH AHEAD
IPv6 extensibility itself brings OpenFlow limited exten-

sibility under the spotlight. We evaluated NXM as a valid
approach to have switches and controllers agree on the flow
match syntax. Moreover, a protocol database like NetPDL
makes this coordination simpler if not automatic. While the
approach works fine in software, further considerations are
required in hardware (e.g., “extensible parsing”, TCAM).
Fixing the hardware forwarding logic with true indepen-
dence of the protocol definitions is as ambitious as challeng-
ing. If achievable at least to some extent, then controllers
could specify bit positions (i.e., “flexible fields”), instead of
packet fields, for conditions and actions, effectively moving
to the controller any extra functionality required to parse
IPv6 EHs and other protocols. Closer in the OpenFlow pro-
tocol roadmap seems the adoption of new flexible data struc-
tures such as TLVs, which may be adopted in further aspects
of the protocol for consistency and maximum extensibility.

4. REFERENCES
[1] Open vSwitch – An Open Virtual Switch.

http://openvswitch.org/.

[2] Openflow 1.1 SoftSwitch.
https://openflow.stanford.edu/display/of11softswitch/Home.

[3] OpenFlow Switch Specification v1.1.0 Implemented.
http://www.openflow.org/documents/openflow-spec-
v1.1.0.pdf.

[4] M. Casado, T. Koponen, D. Moon, and S. Shenker.
Rethinking packet forwarding hardware. In HotNets,
October 2008.

[5] Computer Networks Group (NetGroup) at Politecnico
di Torino. The NetBee Library. http://www.nbee.org/.

[6] S. Deering and R. Hinden. RFC 2460 Internet Protocol,
Version 6 (IPv6) Specification. IETF, Dec 1998.

[7] J. C. Mogul, P. Yalag, J. Tourrilhes, R. Mcgeer,
S. Banerjee, T. Connors, and P. Sharma. API design
challenges for open router platforms on proprietary
hardware. In HotNets, October 2008.

[8] O. Morandi, F. Risso, M. Baldi, and A. Baldini.
Enabling flexible packet filtering through dynamic code
generation. In ICC, pages 5849–5856. IEEE, 2008.

[9] F. Risso and M. Baldi. Netpdl: An extensible
xml-based language for packet header description.
Comput. Netw., 50:688–706, April 2006.

